Skip to main content
Log in

Welding defect detection: coping with artifacts in the production line

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Visual quality inspection for defect detection is one of the main processes in modern industrial production facilities. In the last decades, artificial intelligence solutions took the place of classic computer vision techniques in the production lines and specifically in tasks that, for their complexity, were usually demanded to human workers yet obtaining similar or greater performance of their counterparts. This work exploits a Deep Neural Network for a smart monitoring system capable of performing accurate quality checks to detect welding defects in fuel injectors during the production stage. The contribution focuses on a novel approach to cope with unforeseen changes in production quality introduced by the alteration of a particular machine or process. Results suggest that pre-filtering could avoid the retraining of custom-designed networks. Moreover, the introduction of a weighting strategy on the confusion matrix allows obtaining good performance estimations even in the case of small and unbalanced datasets. Concerning a specific demanding case of an imbalanced dataset with very few positive examples, the system displayed a 96.30% accuracy on defect classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ak R., Ferguson M., Lee Y.T.T., Law K.H. (2017) Automatic localization of casting defects with convolutional neural networks. https://www.nist.gov/publications/automatic-localization-casting-defects-convolutional-neural-networks

  2. Bell S., Upchurch P., Snavely N., Bala K. (2015) Material recognition in the wild with the materials in context database Computer Vision and Pattern Recognition (CVPR)

  3. D’Avella S., Tripicchio P., Avizzano C. A. (2020) A study on picking objects in cluttered environments: exploiting depth features for a custom low-cost universal jamming gripper. Robot Comput Integr Manuf 63(101):888. https://doi.org/10.1016/j.rcim.2019.101888

    Article  Google Scholar 

  4. Fang Z., Xu D., Tan M. (2011) A vision-based self-tuning fuzzy controller for fillet weld seam tracking. IEEE/ASME Transactions on Mechatronics 16(3):540–550. https://doi.org/10.1109/TMECH.2010.2045766

    Article  Google Scholar 

  5. Gao Y., Gao L., Li X., Yan X. (2020) A semi-supervised convolutional neural network-based method for steel surface defect recognition, vol 61. http://www.sciencedirect.com/science/article/pii/S0736584518304770

  6. He K., Zhang X., Ren S., Sun J. (2015) Deep residual learning for image recognition. arXiv:1512.03385

  7. He K., Zhang X., Ren S., Sun J. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778

  8. Huang G., Liu Z., Van der Maaten L., Weinberger K.Q. (2016) Densely connected convolutional networks. arXiv:1608.06993

  9. Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708

  10. Krizhevsky A., Sutskever I., Hinton G.E. (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pp. 1097–1105. Curran Associates Inc., USA. http://dl.acm.org/citation.cfm?id=2999134.2999257

  11. Larsson G., Maire M., Shakhnarovich G. (2016) Fractalnet: ultra-deep neural networks without residuals. arXiv:1605.07648

  12. Lin T. Y., Goyal P., Girshick R., He K., Dollár P. (2017) Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980– 2988

  13. Malamas E.N., Petrakis E.G., Zervakis M., Petit L., Legat J.D. (2003) A survey on industrial vision systems, applications and tools. Image and Vision Computing 21(2):171–188. https://doi.org/10.1016/S0262-8856(02)00152-X. https://www.sciencedirect.com/science/article/pii/S026288560200152X

    Article  Google Scholar 

  14. Masci J., Meier U., Ciresan D., Schmidhuber J., Fricout G. (2012) Steel defect classification with Max-Pooling Convolutional Neural Networks. In: 2012 Int. Jt. Conf. Neural Networks, pp. 1–6. IEEE. http://ieeexplore.ieee.org/document/6252468/, https://doi.org/10.1109/IJCNN.2012.6252468, (to appear in print)

  15. Mower J. P. (2005) Prep-mt: predictive rna editor for plant mitochondrial genes. BMC bioinformatics 6(1):96

    Article  Google Scholar 

  16. Pandiyan V., Murugan P., Tjahjowidodo T., Caesarendra W., Manyar O.M., Then D.J.H. (2019) In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robotics and Computer-Integrated Manufacturing 57:477–487. https://doi.org/10.1016/j.rcim.2019.01.006. http://www.sciencedirect.com/science/article/pii/S073658451830406X

    Article  Google Scholar 

  17. Podržaj P., Čebular A. (2016) The application of lvq neural network for weld strength evaluation of rf-welded plastic materials. IEEE/ASME Transactions on Mechatronics 21(2):1063–1071. https://doi.org/10.1109/TMECH.2015.2498278

    Article  Google Scholar 

  18. Ren R., Hung T., Tan K. C. (2018) A generic deep-learning-based approach for automated surface inspection. IEEE Transactions on Cybernetics 48(3):929–940. https://doi.org/10.1109/TCYB.2017.2668395

    Article  Google Scholar 

  19. Rout A., Deepak B., Biswal B. (2019) Advances in weld seam tracking techniques for robotic welding: a review. Robotics and Computer-Integrated Manufacturing 56:12–37. https://doi.org/10.1016/j.rcim.2018.08.003. http://www.sciencedirect.com/science/article/pii/S0736584517302132

    Article  Google Scholar 

  20. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-fei L. (2015) Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV) 115(3):211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  21. Sassi P., Tripicchio P., Avizzano C. A. (2019) A smart monitoring system for automatic welding defect detection IEEE Transactions on Industrial Electronics

  22. Senthil Kumar G., Natarajan U., Ananthan S.S. (2012) Vision inspection system for the identification and classification of defects in MIG welding joints. Int. J. Adv. Manuf. Technol. 61(9-12):923–933. https://doi.org/10.1007/s00170-011-3770-z. http://link.springer.com/10.1007/s00170-011-3770-z

    Article  Google Scholar 

  23. Shah H.N.M., Sulaiman M., Shukor A.Z., Kamis Z., Rahman A.A. (2018) Butt welding joints recognition and location identification by using local thresholding. Robotics and Computer-Integrated Manufacturing 51:181–188. https://doi.org/10.1016/j.rcim.2017.12.007. http://www.sciencedirect.com/science/article/pii/S0736584517301825

    Article  Google Scholar 

  24. Shao J., Yan Y. (2005) Review of techniques for on-line monitoring and inspection of laser welding. Journal of Physics: Conference Series 15(1):101–107. https://doi.org/10.1088/1742-6596/15/1/017. http://stacks.iop.org/1742-6596/15/i=1/a=017?key=crossref.db19901016cb0ead0470f822ed8309c4

    Article  Google Scholar 

  25. Srivastava R.K., Greff K., Schmidhuber J. (2015) Highway networks. arXiv:1505.00387

  26. Xie S., Tu Z. (2015) Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403

  27. Xiong J., Liu G., Pi Y. (2019) Increasing stability in robotic gta-based additive manufacturing through optical measurement and feedback control. Robotics and Computer-Integrated Manufacturing 59:385–393. https://doi.org/10.1016/j.rcim.2019.05.012. http://www.sciencedirect.com/science/article/pii/S073658451830231X

    Article  Google Scholar 

  28. Yan Z., Zhang G., Wun L. (2011) Simulation and controlling for weld shape process in p-gmaw based on fuzzy logic. In: 2011 IEEE International Conference on Mechatronics and Automation, pp. 2078–2082. https://doi.org/10.1109/ICMA.2011.5986301

  29. Yosinski J., Clune J., Bengio Y., Lipson H. (2014) How transferable are features in deep neural networks. arXiv:1411.1792

  30. Zahran O., Kasban H., El-Kordy M., El-Samie F.A. (2013) Automatic weld defect identification from radiographic images. NDT E Int 57:26–35. https://doi.org/10.1016/J.NDTEINT.2012.11.005. https://www.sciencedirect.com/science/article/pii/S0963869512001557

    Article  Google Scholar 

  31. Zammar I. A., Mantegh I., Huq M. S., Yousefpour A., Ahmadi M. (2015) Intelligent thermal control of resistance welding of fiberglass laminates for automated manufacturing. IEEE/ASME Transactions on Mechatronics 20(3):1069–1078. https://doi.org/10.1109/TMECH.2014.2366100

    Article  Google Scholar 

  32. Zhao J., Sheng H., Zhou X. (2016) Study on the application of acoustic emission testing technique in monitoring 16mn steel welding defects. In: 2016 International Conference on Advanced Mechatronic Systems (ICAMechs), pp. 318–321, https://doi.org/10.1109/ICAMechS.2016.7813467, (to appear in print)

  33. Zheng K., Li J., Lei Tu C., Song Wang X. (2016) Two opposite sides synchronous tracking x-ray based robotic system for welding inspection. In: 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–5, https://doi.org/10.1109/M2VIP.2016.7827334, (to appear in print)

  34. Zhou S., Chen Y., Zhang D., Xie J., Zhou Y. (2017) Classification of surface defects on steel sheet using convolutional neural networks. Mater. Tehnol. 51:123–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tripicchio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripicchio, P., Camacho-Gonzalez, G. & D’Avella, S. Welding defect detection: coping with artifacts in the production line. Int J Adv Manuf Technol 111, 1659–1669 (2020). https://doi.org/10.1007/s00170-020-06146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06146-4

Keywords

Navigation