Skip to main content
Log in

Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Single-point incremental forming (SPIF) is a rising technology used shaping sheet-metals. The emergence of this manufacturing process is due to its capability to produce parts with complex shape at lower cost. The present contribution is focused on the presentation of a new designed rolling ball forming tool that can improve (SPIF) operations. For that, the effects of process working parameters on a set of process qualification criteria when forming of AA1050 aluminum alloy sheets is presented. Deep analyses treating impacts of tool step down, tool rolling ball diameter, and tool feed rate on the process responses such as forming axial forces, surface roughness, and sheet thinning are made. The analysis is based on statistical methodologies which made it possible to establish, using the multiple regression method, predictive analytical models for the different responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

D:

Rolling ball diameter (mm)

Df:

Degrees of freedom

F:

Tool feed rate (mm/min)

Favr :

Average axial forming force (N)

Fmax :

Maximal axial forming force (N)

Fz :

Axial Forming force (N)

F-value:

Fisher test value

ISF:

Incremental sheet forming

MS:

Mean squares

PC%:

Percentage of contribution (%)

P value:

Value of significance

RSM:

Response surface methodology

R2 :

Determination coefficient

R2adjusted :

Adjusted determination coefficient

R2predictif :

Predictive determination coefficient

Ra :

Arithmetic mean roughness (μm)

Rz :

Mean peak-to-valley height (μm)

Rt :

Maximum profile height (μm)

SPIF:

Single-point incremental forming

SS:

Squared deviations

SSD :

Sum of squared deviations

SST :

Total sum of squared deviations

ΔZ:

Vertical step down (mm)

ϕ:

Wall angle (degree)

References

  1. Leszak E (1967) Apparatus and process for incremental dieless forming, United States Patent Office. Patent [US 3342051]

  2. Mason B, Appleton E (1984) Sheet metal forming for small batches using sacrificial tooling.. In: Proc 3rd Int. Conf. On rotary metalworking, Kyoto, Japan, pp. 495–511

  3. Emmens WC, Sebastiani G, Boogaard AH (2010) The technology of incremental sheet forming – a brief review of the history. J Mater Process Technol 210:981–997

    Article  Google Scholar 

  4. Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. Proceedings of 40th JJCTP41–44

  5. Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool. JJpn Soc Technol Plast 35(1994):1311–1316

    Google Scholar 

  6. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou A, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):623–649

    Article  Google Scholar 

  7. Gunashekar G, Kishore K (2017) Modeling and manufacturing of an aerospace component by single point incremental forming process. International Research Journal of Engineering and Technology 4(9): 600-603

  8. Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28(3):324–329

    Article  Google Scholar 

  9. Boulila A, Ayadi M, Marzouki S, Slim B (2018) Contribution to a biomedical component production using incremental sheet forming. Int J Adv Manuf Technol 95:2821

    Article  Google Scholar 

  10. Wulf WA (2007) Changes in innovation ecology. Science 316:1253

    Article  Google Scholar 

  11. Behera A K, Alves de Sousa R, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. The Society of Manufacturing Engineers.1526–6125/2017

    Article  Google Scholar 

  12. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao GA Review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol 92:2439–2462

    Article  Google Scholar 

  13. Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74:163–185

    Article  Google Scholar 

  14. Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameter in incremental sheet forming. Int J Adv Manuf Technol 87:479–499

    Article  Google Scholar 

  15. Cawley B, Adams D, Jeswiet J (2012) Examining tool shapes in single point incremental forming. Proc NAMRI/SME 13(17):163

    Google Scholar 

  16. Hussain G (2014) Experimental investigations on the role of tool size in causing and controlling defects in single point incremental forming process. Proc IMechE Part B 228:266–277

    Article  Google Scholar 

  17. Siddiqi MUR, Corney JR, Sivaswamy G, Amir M, Bhattacharya R (2017) Design and validation of a fixture for positive incremental sheet forming. Proc Inst Mech Eng B J Eng Manuf 232(4):629–643

    Article  Google Scholar 

  18. Do VC, Lee BH, Yang SH, Kim YS (2017) The forming characteristic in the single-point incremental forming of a complex shape. Int J Nanomanuf 13(1):33

    Article  Google Scholar 

  19. Fernandez C, Trujillo A, Rivero A, Alvarez M, Puerta F J, Salguero J, Marcos M (2016) Implementing incremental sheet metal forming on a CNC machining centre. Proceedings of the 26th DAAAM International Symposium, pp.0926-0929, B

  20. Li Y, Lu H, Daniel WJT, Meehan PA (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79:2041–2055

    Article  Google Scholar 

  21. Ambrogio G, Duflou J.R, Filice L, Aerens R (2007) Some considerations on force trends in Incremental Forming of different materials. 10th ESAFORM conference on material forming, AIP Conference Proceedings, vol 907, pp 193–198

  22. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46:969–982

    Article  Google Scholar 

  23. Dwivedy M, Kalluri V (2019) The effect of process parameters on forming forces in single point incremental forming. Procedia Manuf 29/120–128

    Article  Google Scholar 

  24. Saidi B, Giraud-Moreau L, Boulila A, Cherouat A, Nasri R (2017) Experimental and numerical study on force reduction in SPIF by using response surface. Lecture Notes in Mechanical Engineering, 835–844

  25. Duflou JR, Tunçkol Y, Aerens R (2007) Force analysis for single point incremental forming. Key Eng Mater:344/543–344/550

  26. Duflou J, Tunckol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189:65–72

    Article  Google Scholar 

  27. Liu Z, Liu S, Li Y, Meehan PA (2014) Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function. Mater Manuf Process 29(7):808–818

    Article  Google Scholar 

  28. Kurra S, Rahman NH, Regalla SP, Gupta AK (2018) Modeling and optimization of surface roughness in single point incremental forming process. J Mater Res Technol 4(3):304–313

    Article  Google Scholar 

  29. Durante M, Formisano A, Langella A, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626

    Article  Google Scholar 

  30. Durante M, Formisano A, Langella A (2010) Comparison between analytical and experimental roughness values of components created by incremental forming. J Mater Process Technol 210(14):1934–1941

    Article  Google Scholar 

  31. Salem E, Shin J, Nath M, Banu M, Taub A (2016) Investigation of thickness variation in single point incremental forming. Procedia Manuf:5/828–5/837

  32. Li JC, Li C, Zhou TG (2012) Thickness distribution and mechanical property of sheet metal incremental forming based on numerical simulation. Trans Nonferrous Metals Soc China 22(1):58–64

    Google Scholar 

  33. Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. Proceedings of 40th JJCTP41–44

  34. Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130-131:42–46

    Article  Google Scholar 

  35. Shim MS, Park JJ (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113(1–3):654–658

    Article  Google Scholar 

  36. Matsubara S (2001) Apparatus for dieless forming plate materials, United States Patent Office. Patent [US6216508B1]

  37. Zhongyi C (2010) Rolling tool head for incremental forming, Chinese Patent Office. Patent [CN101758135A]

  38. Lu B et al (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique rollerball tool. Int J Mach Tools Manuf 85:14–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mabrouki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilani, L., Mabrouki, T., Ayadi, M. et al. Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process. Int J Adv Manuf Technol 106, 4123–4142 (2020). https://doi.org/10.1007/s00170-019-04918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04918-1

Keywords

Navigation