Skip to main content
Log in

Application of in situ post weld heat treatment using double pulse technology and its effect on microstructure and mechanical performance of resistance spot welded HSLA350 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In situ post weld heat treatment (PWHT) by applying a second pulse current during resistance spot welding (RSW) provides a new pathway to alter the microstructure of the fusion zone (FZ) and improves the mechanical performance of the RSW joint. In the present study, effect of the second pulse current on microstructural characteristics and mechanical performance of resistance spot weld joint of HSLA350 steel under were investigated. It was observed that after applying the second pulse current during welding process, it subdivides the initial solidified fusion zone into two zones, namely equiaxed grain zone (EGZ) and columnar grain zone (CGZ). The outer layer becomes EGZ consisting of quasi-equiaxed grains of ferrite and martensite whereas the inner core is CGZ solidified with a columnar grain structure consisting of martensite and some bainite. The refinement of microstructure in the case of double pulse weld resulted in enhanced tensile shear strength and failure energy absorption capacity with ductile pullout failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Keeler S, Kimchi M, Mconey PJ (2017) Advanced High-Strength Steels Application Guidelines. Version 6.0. World Auto Steel, April 2017

  2. Hilditch TB, de Souza T, Hodgson PD (2015) Properties and automotive applications of advanced high-strength steels (AHSS). In: Welding and joining of advanced high strength steels (AHSS). Woodhead Publishing, pp 9-28. doi:https://doi.org/10.1016/b978-0-85709-436-0.00002-3

    Chapter  Google Scholar 

  3. Park D-B, Huh M-Y, Shim J-H, Suh J-Y, Lee K-H, Jung W-S (2013) Strengthening mechanism of hot rolled Ti and Nb microalloyed HSLA steels containing Mo and W with various coiling temperature. Mater Sci Eng A 560:528–534. https://doi.org/10.1016/j.msea.2012.09.098

    Article  Google Scholar 

  4. Pouranvari M, Marashi SPH (2011) Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors. Mater Sci Eng A 528(29-30):8337–8343. https://doi.org/10.1016/j.msea.2011.08.017

    Article  Google Scholar 

  5. Pouranvari M, Marashi SPH (2013) Key factors influencing mechanical performance of dual phase steel resistance spot welds. Sci Technol Weld Join 15(2):149–155. https://doi.org/10.1179/136217109x12590746472535

    Article  Google Scholar 

  6. Pouranvari M, Mousavizadeh SM, Marashi SPH, Goodarzi M, Ghorbani M (2011) Influence of fusion zone size and failure mode on mechanical performance of dissimilar resistance spot welds of AISI 1008 low carbon steel and DP600 advanced high strength steel. Mater Des 32(3):1390–1398. https://doi.org/10.1016/j.matdes.2010.09.010

    Article  Google Scholar 

  7. Pouranvari M, Hoveida Marashi SP, Jaber HL (2015) DP780 dual-phase-steel spot welds: critical fusion-zone size ensuring the pull-out failure mode. Mater Tehnol 49(4):579–585. https://doi.org/10.17222/mit.2014.184

    Article  Google Scholar 

  8. Society AW (2002) Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials D8.9M. AWS/ANSI/SAE

  9. Pouranvari M, Marashi SPH, Safanama DS (2011) Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation. Mater Sci Eng A 528(29-30):8344–8352. https://doi.org/10.1016/j.msea.2011.08.016

    Article  Google Scholar 

  10. Pouranvari M, Ranjbarnoodeh E (2013) Failure mode of HSLA/DQSK dissimilar steel resistance spot welds. Ironmak Steelmak 40(4):276–281. https://doi.org/10.1179/1743281212y.0000000044

    Article  Google Scholar 

  11. Pouranvari M, Asgari HR, Mosavizadch SM, Marashi PH, Goodarzi M (2013) Effect of weld nugget size on overload failure mode of resistance spot welds. Sci Technol Weld Join 12(3):217–225. https://doi.org/10.1179/174329307x164409

    Article  Google Scholar 

  12. Sajjadi-Nikoo S, Pouranvari M, Abedi A, Ghaderi AA (2017) In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds. Sci Technol Weld Join 23(1):71–78. https://doi.org/10.1080/13621718.2017.1323174

    Article  Google Scholar 

  13. Chabok A, van der Aa E, De Hosson JTM, Pei YT (2017) Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel. Mater Des 124:171–182. https://doi.org/10.1016/j.matdes.2017.03.070

    Article  Google Scholar 

  14. Eftekharimilani P, van der Aa EM, Hermans MJM, Richardson IM (2017) Microstructural characterisation of double pulse resistance spot welded advanced high strength steel. Sci Technol Weld Join 22(7):545–554. https://doi.org/10.1080/13621718.2016.1274848

    Article  Google Scholar 

  15. Chabok A, van der Aa E, Basu I, De Hosson J, Pei Y (2018) Effect of pulse scheme on the microstructural evolution, residual stress state and mechanical performance of resistance spot welded DP1000-GI steel. Sci Technol Weld Join 23(8):649–658. https://doi.org/10.1080/13621718.2018.1452875

    Article  Google Scholar 

  16. Hernandez VB, Okita Y, Zhou Y (2012) Second pulse current in resistance spot welded TRIP steel—effects on the microstructure and mechanical behavior. Weld J 91:278–285

    Google Scholar 

  17. Liu XD, Xu YB, Misra RDK, Peng F, Wang Y, Du YB (2019) Mechanical properties in double pulse resistance spot welding of Q&P 980 steel. J Mater Process Technol 263:186–197. https://doi.org/10.1016/j.jmatprotec.2018.08.018

    Article  Google Scholar 

  18. Zhong N, Liao X, Wang M, Wu Y, Rong Y (2011) Improvement of microstructures and mechanical properties of resistance spot welded DP600 steel by double pulse technology. Mater Trans 52(12):2143–2150. https://doi.org/10.2320/matertrans.M2011135

    Article  Google Scholar 

  19. Pouranvari M, Aghajani H, Ghasemi A (2019) Enhanced mechanical properties of martensitic stainless steels resistance spot welds enabled by in situ rapid tempering. Sci Technol Weld Joining 1-8. doi:https://doi.org/10.1080/13621718.2019.1641962

  20. Nikoosohbat F, Kheirandish S, Goodarzi M, Pouranvari M, Marashi SPH (2013) Microstructure and failure behaviour of resistance spot welded DP980 dual phase steel. Mater Sci Technol 26(6):738–744. https://doi.org/10.1179/174328409x414995

    Article  Google Scholar 

  21. Sawanishi C, Ogura T, Taniguchi K, Ikeda R, Oi K, Yasuda K, Hirose A (2013) Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Sci Technol Weld Join 19(1):52–59. https://doi.org/10.1179/1362171813y.0000000165

    Article  Google Scholar 

  22. Duan R, Luo Z, Li Y, Zhang Y, Liu ZM (2014) Novel postweld heat treatment method for improving mechanical properties of resistance spot weld. Sci Technol Weld Join 20(2):100–105. https://doi.org/10.1179/1362171814y.0000000262

    Article  Google Scholar 

  23. Pouranvari M (2013) Failure mode transition in similar and dissimilar resistance spot welds of HSLA and low carbon steels. Can Metall Q 51(1):67–74. https://doi.org/10.1179/1879139511y.0000000020

    Article  Google Scholar 

  24. Khan MS, Bhole SD, Chen DL, Biro E, Boudreau G, van Deventer J (2013) Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels. Sci Technol Weld Join 14(7):616–625. https://doi.org/10.1179/136217109x12464549883295

    Article  Google Scholar 

  25. Yurioka N (2004) Comparison of preheat predictive methods. Weld World 48(1-2):21–27

    Article  Google Scholar 

  26. Jaber HL, Pouranvari M, Salim RK, Hashim FA, Marashi SPH (2016) Peak load and energy absorption of DP600 advanced steel resistance spot welds. Ironmak Steelmak 44(9):699–706. https://doi.org/10.1080/03019233.2016.1229880

    Article  Google Scholar 

  27. Pouranvari M, Marashi SPH (2013) Failure of resistance spot welds: tensile shear versus coach peel loading conditions. Ironmak Steelmak 39(2):104–111. https://doi.org/10.1179/1743281211y.0000000066

    Article  Google Scholar 

  28. Gould J, Khurana S, Li T (2006) Predictions of microstructures when welding automotive advanced high-strength steels. Weld J-New York 85(5):111

    Google Scholar 

  29. Bose-Filho WW, Carvalho ALM, Strangwood M (2007) Effects of alloying elements on the microstructure and inclusion formation in HSLA multipass welds. Mater Charact 58(1):29–39. https://doi.org/10.1016/j.matchar.2006.03.004

    Article  Google Scholar 

  30. Pouranvari M (2013) On the failure mode of resistance spot welded HSLA 420 steel. Arch Metall Mater 58(1):67–72. https://doi.org/10.2478/v10172-012-0152-y

    Article  Google Scholar 

  31. Pouranvari M, Marashi SPH, Mousavizadeh SM (2011) Dissimilar resistance spot welding of DP600 dual phase and AISI 1008 low carbon steels: correlation between weld microstructure and mechanical properties. Ironmak Steelmak 38(6):471–480. https://doi.org/10.1179/1743281211Y.0000000024

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Bloxwich Sdn Bhd Malaysia for providing material for the present study.

Funding

This work was supported by the Universiti Teknologi PETRONAS Malaysia Grant URIF 0153AA-G23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiaz Ali Soomro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomro, I.A., Pedapati, S.R. Application of in situ post weld heat treatment using double pulse technology and its effect on microstructure and mechanical performance of resistance spot welded HSLA350 steel. Int J Adv Manuf Technol 105, 3249–3260 (2019). https://doi.org/10.1007/s00170-019-04569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04569-2

Keywords

Navigation