Skip to main content
Log in

Form error compensation in the slow tool servo machining of freeform optics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Advancements in diamond turning technology with tool servo configurations enables the generation of precise freeform surfaces. However, the profile accuracy is mainly limited due to non-availability of an efficient tool path compensation techniques and precise alignment methods. The aim of this study is focused on developing a tool path compensation routine for slow tool servo machining of freeform optics. A seven-order polynomial freeform surface, designed for hyperspectral imaging is selected for experimentation. Alignment strategy by utilizing the available fiducials is presented to ensure the precise re-mounting of surface during machining and metrology. The contact type profilometer is used to measure the fabricated surface by taking 25 numbers of two-dimensional raster scans at an interval of 0.5 mm. The scans are then stitched to get the 3D surface measurement. The residual form error map is used to compensate the tool path. Significant reduction in form error, i.e., from peak to valley (PV) of 9.27 to 0.75 μm with surface finish (Ra) of 11.82 nm, is achieved by performing four machining iterations of compensation. The simulation studies are also presented to investigate the effects of various misalignments on manufacturing accuracies. The developed compensation process is effective for fast convergence of form error and to manufacture the precise freeform optics for various imaging and non-imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abd El-Maksoud RH, Hillenbrand M, Sinzinger S (2013) Parabasal theory for plane-symmetric systems including freeform surfaces. Opt Eng 53(3):031303–031303. https://doi.org/10.1117/1.oe.53.3.031303

    Article  Google Scholar 

  2. Zhang X, Zheng L, He X, Wang L, Zhang F, Yu S, Shi G, Zhang B, Liu Q, Wang T (2012) Design and fabrication of imaging optical systems with freeform surfaces. Proc SPIE Int Soc Opt Eng 8486:848607–848610. https://doi.org/10.1117/12.928387

    Article  Google Scholar 

  3. Zhenrong Z, Xiang H, Xu L (2009) Freeform surface lens for LED uniform illumination. Appl Opt 48(35):6627–6634. https://doi.org/10.1364/ao.48.006627

    Article  Google Scholar 

  4. Clayor N, Combs DM, Lechuga OM, Mader JJ, Udayasankaran J (2004) An overview of freeform optics production. In: Proceedings of the SPIE

  5. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846. https://doi.org/10.1016/j.cirp.2013.05.003

    Article  Google Scholar 

  6. Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput Aided Des 42(7):641–654. https://doi.org/10.1016/j.cad.2010.04.002

    Article  Google Scholar 

  7. Zhu L, Li Z, Fang F, Huang S, Zhang X (2018) Review on fast tool servo machining of optical freeform surfaces. Int J Adv Manuf Technol 95(5):2071–2092. https://doi.org/10.1007/s00170-017-1271-4

    Article  Google Scholar 

  8. Thompson KP, Rolland JP (2012) Freeform optical surfaces: a revolution in imaging optical design. Opt Photonics News 23(6):30–35

    Article  Google Scholar 

  9. Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835

    Article  Google Scholar 

  10. Ohl Iv RG, Dow TA, Sohn A, Garrard K (2004) Highlights of the ASPE 2004 Winter Topical Meeting on Free-Form Optics: design, fabrication, metrology, assembly. In. pp 49-56

  11. Wang X, Fu X, Li C, Kang M (2015) Tool path generation for slow tool servo turning of complex optical surfaces. Int J Adv Manuf Technol 79(1):437–448. https://doi.org/10.1007/s00170-015-6846-3

    Article  Google Scholar 

  12. Slavkovic NR, Milutinovic DS, Glavonjic MM (2014) A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification. Int J Adv Manuf Technol 70(9):2083–2096. https://doi.org/10.1007/s00170-013-5421-z

    Article  Google Scholar 

  13. Liu X, Li Y, Xu X (2018) A region-based tool path generation approach for machining freeform surfaces by applying machining strip width tensor. Int J Adv Manuf Technol 98:3191–3204. https://doi.org/10.1007/s00170-018-2427-6

    Article  Google Scholar 

  14. Lazoglu I, Manav C, Murtezaoglu Y (2009) Tool path optimization for free form surface machining. CIRP Ann Manuf Technol 58(1):101–104

    Article  Google Scholar 

  15. Wolfs F, Fess E, DeFisher S, Torres J, Ross J (2015) Freeform grinding and polishing with PROSurf. Proc SPIE OptiFab G 96331

  16. Murphy J (2015) Optics fabrication: changes, challenges and progress. Laurin Publ Co Inc Berkshire Common Po, PittsfielD

    Google Scholar 

  17. Su P, Oh CJ, Parks RE, Burge JH (2009) Swing arm optical CMM for aspherics. In: Optical manufacturing and testing VIII. International Society for Optics and Photonics, p 74260J

  18. Jiang X, Scott P, Whitehouse D (2007) Freeform surface characterisation-a fresh strategy. CIRP Ann Manuf Technol 56(1):553–556

    Article  Google Scholar 

  19. Qiao J, Mulhollan Z (2016) Dorrer C Optical differentiation wavefront sensing for freeform optics metrology. In: Frontiers in optics. Optical Society of America, p FW5H. 5

  20. Pant KK, Burada DR, Bichra M, Singh MP, Ghosh A, Khan GS, Sinzinger S, Shakher C (2015) Subaperture stitching for measurement of freeform wavefront. Appl Opt 54(34):10022–10028

    Article  Google Scholar 

  21. Khan G (2015) Non-null technique for measurement of freeform wavefront using stitching approach. In: Freeform optics. Optical Society of America, p FTh2B. 3

  22. Khan G, Bichra M, Grewe A, Sabitov N, Mantel K, Harder I, Berger A, Lindlein N (2013) Sinzinger S Metrology of freeform optics using diffractive null elements in Shack-Hartmann sensors. In: 3rd EOS Conference on Manufacturing of Optical Components, pp 13–15

    Google Scholar 

  23. Burada DR, Pant KK, Mishra V, Bichra M, Khan GS, Sinzinger S, Shakher C (2017) Development of metrology for freeform optics in reflection mode. In: SPIE Optical Metrology. International Society for Optics and Photonics, p 103291K-103298

  24. Burada DR, Pant KK, Bichra M, Khan GS, Sinzinger S, Shakher C (2017) Experimental investigations on characterization of freeform wavefront using Shack–Hartmann sensor. Opt Eng 56(8):084107. https://doi.org/10.1117/1.OE.56.8.084107

    Article  Google Scholar 

  25. Brunelle M, Yuan J, Medicus K, Nelson JD (2015) Importance of fiducials on freeform optics. In: SPIE Optifab. International Society for Optics and Photonics, pp 963318-963318-963318

  26. Sohn A (2004) Fixturing and alignment of free-form optics for diamond turning. In: Proceedings of the American Society for Precision Engineering Winter Topical Meeting on Free-Form Optics: design, fabrication, metrology, assembly. Citeseer

  27. Zhang X, Zeng Z, Liu X, Fang F (2015) Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement. Opt Express 23(19):24800–24810. https://doi.org/10.1364/oe.23.024800

    Article  Google Scholar 

  28. Chen S, Wu C, Xue S, Li Z (2018) Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form surfaces. Int J Adv Manuf Technol 97(9):3595–3606. https://doi.org/10.1007/s00170-018-2203-7

    Article  Google Scholar 

  29. Chen C-C, Huang C-Y, Peng W-J, Cheng Y-C, Yu Z-R, Hsu W-Y (2013) Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning. Proc. SPIE, p 88380Y

  30. Ye H, Mingxu X, Xuezheng X, Zhaojun Y, Yinlong Z (2014) An accurate interpolator for FTS diamond turning of optical free-form surface. Int J Adv Manuf Technol 73(5):635–638. https://doi.org/10.1007/s00170-014-5856-x

    Article  Google Scholar 

  31. Liu Q, Pan S, Yan H, Zhou X, Wang R (2016) In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo. Int J Adv Manuf Technol 86(1-4):793–798

    Article  Google Scholar 

  32. Kim H-S, Lee K-I, Lee K-M, Bang Y-B (2009) Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement. Int J Mach Tools Manuf 49(12):991–997

    Article  Google Scholar 

  33. Zhu Z, To S (2015) Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics. Opt Express 23(16):20234–20248

    Article  Google Scholar 

  34. Mishra V, Pant K, Burada DR, Karar V, Khan G, Jha S (2017) Generation of freeform surface by using slow tool servo. In: Freeform Optics. Optical Society of America, p FTh3B. 2

  35. Lindlein N, Simon F, Schwider J (1998) Simulation of micro-optical array systems with RAYTRACE. Opt Eng 37(6):1809–1817

    Article  Google Scholar 

  36. Mishra V, Khatri N, Nand K, Singh K, V Sarepaka R (2015) Experimental investigation on uncontrollable parameters for surface finish during diamond turning. Mater Manuf Process 30(2):232–240

    Article  Google Scholar 

  37. Mishra V, Khan GS, Chattopadhyay K, Nand K, Sarepaka RV (2014) Effects of tool overhang on selection of machining parameters and surface finish during diamond turning. Measurement 55:353–361

    Article  Google Scholar 

  38. Yu DP, Wong YS, Hong GS (2011) Optimal selection of machining parameters for fast tool servo diamond turning. Int J Adv Manuf Technol 57(1):85–99. https://doi.org/10.1007/s00170-011-3280-z

    Article  Google Scholar 

  39. Chen C-C, Cheng Y-C, Hsu W-Y, Chou H-Y, Wang P-J, Tsai DP (2011) Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens, vol 8126. SPIE Optical Engineering + Applications. SPIE

Download references

Acknowledgements

We acknowledge Prof. Stefan Sinzinger of Technical University, Ilmenau, Germany, for providing the design data of the freeform surface for fabrication experiment under Indo-German DSTDAAD Project-Based Personnel Exchange Program 2013 to 2015

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gufran S. Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Burada, D.R., Pant, K.K. et al. Form error compensation in the slow tool servo machining of freeform optics. Int J Adv Manuf Technol 105, 1623–1635 (2019). https://doi.org/10.1007/s00170-019-04359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04359-w

Keywords

Navigation