Skip to main content
Log in

A review of friction stir–based processes for joining dissimilar materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper covers a detailed study of friction stir–related processes with the focus on joining dissimilar materials. First, the effects of the process parameters and tool geometries on weld mechanical properties, defects, and weld microstructure along with the formation and growth of intermetallics are systematically reviewed. Process-structure-property relationships are discussed in details. Second, the paper summarizes different physical models that have been developed for friction stir–related process. A specific session on modeling dissimilar material joining is provided. The objective of these models is to determine the temperature profile, stress, and strain distribution along with material flow field based on the input process parameters and tool geometries. By further implementing these results into microstructure evolution and material property models, the dissimilar material weld mechanical performance can be predicted eventually. Third, recently developed friction stir variants for process improvement and joint quality enhancement are discussed. Finally, potential future research directions are recommended in conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Han L, Thornton M, Li D, Shergold M (2011) Effect of governing metal thickness and stack orientation on weld quality and mechanical behaviour of resistance spot welding of AA5754 aluminium. Mater Des 32(4):2107–2114

    Google Scholar 

  2. Nanda T, Singh V, Singh V, Chakraborty A, Sharma S (2019) Third generation of advanced high-strength steels: Processing routes and properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(2):209–238

    Google Scholar 

  3. Sun X, Stephens EV, Khaleel MA (2008) Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions. Eng Fail Anal 15(4):356–367

    Google Scholar 

  4. Kuziak R, Kawalla R, Waengler S (2008) Advanced high strength steels for automotive industry. Arch Civil Mech Eng 8(2):103–117

    Google Scholar 

  5. Kwon O, Lee KY, Kim GS, Chin KG (2010) New Trends in Advanced High Strength Steel Developments for Automotive Application. Materials Science Forum 638–642:136–141

    Google Scholar 

  6. Matlock DK, Speer JG, Moor ED, Gibbs PJ (2012) Recent developments in advanced high strength sheet steels for automotive applications: an overview. JESTECH 15(1):1–12

    Google Scholar 

  7. Long X, Khanna SK (2007) Fatigue properties and failure characterization of spot welded high strength steel sheet. Int J Fatigue 29(5):879–886

    Google Scholar 

  8. Badarinarayan H, Yang Q, Zhu S (2009) Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tools Manuf 49(2):142–148

    Google Scholar 

  9. Qiu R, Iwamoto C, Satonaka S (2009) The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding. Mater Charact 60(2):156–159

    Google Scholar 

  10. Qiu R, Iwamoto C, Satonaka S (2009) Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate. J Mater Process Technol 209(8):4186–4193

    Google Scholar 

  11. Sun X, Stephens EV, Khaleel MA, Shao H, Kimchi M (2004) Resistance spot welding of aluminum alloy to steel with transition material-from process to performance-part I: experimental study. Weld J 83:188-S

    Google Scholar 

  12. Qiu R, Satonaka S, Iwamoto C (2009) Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels. Mater Des 30(9):3686–3689

    Google Scholar 

  13. Ambroziak A, Korzeniowski M (2010) Using resistance spot welding for joining aluminium elements in automotive industry. Arch Civil Mech Eng 10(1):5–13

    Google Scholar 

  14. Hao M, Osman K, Boomer D, Newton C (1996) Developments in characterization of resistance spot welding of aluminum. Weld J 75(1):1–4 Including Welding Research Supplement

    Google Scholar 

  15. Florea R, Bammann D, Yeldell A, Solanki K, Hammi Y (2013) Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy. Mater Des 45:456–465

    Google Scholar 

  16. Lindenburg R, Braton N (1976) Aluminum welding, welding and other joining processes. Allyn and Bacon, Inc., Boston

    Google Scholar 

  17. Han L, Thornton M, Boomer D, Shergold M (2010) Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding. J Mater Process Technol 210(8):1076–1082

    Google Scholar 

  18. Fukumoto S, Lum I, Biro E, Boomer D, Zhou Y (2003) Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182. Weld J 82(11):307-S

    Google Scholar 

  19. Florea R, Solanki K, Bammann D, Baird J, Jordon J, Castanier M (2012) Resistance spot welding of 6061-T6 aluminum: failure loads and deformation. Mater Des 34:624–630

    Google Scholar 

  20. Mishra RS, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1):1–78

    Google Scholar 

  21. Thomas W, Nicholas E, Needham J, Murch M, Temple-Smith P, Dawes C (1991) Friction stir butt welding, International Patent Appl. n. PCT/GB92/02203 and GB Patent Appl. n. 9125978.8,” US Patent(5,460,317)

  22. Rao H, Yuan W, Badarinarayan H (2015) Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des (1980–2015) 66:235–245

    Google Scholar 

  23. Chen K, Liu X, Ni J. Effects of process parameters on friction stir spot welding of aluminum alloy to advanced high-strength steel, Proc. ASME 2016 11th International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers, pp V001T002A011–V001T002A011

  24. Bilici MK, Yükler Aİ, Kurtulmuş M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des 32(7):4074–4079

    Google Scholar 

  25. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Google Scholar 

  26. Seidel T, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32(11):2879–2884

    Google Scholar 

  27. Balasubramanian V (2008) Relationship between base metal properties and friction stir welding process parameters. Mater Sci Eng A 480(1–2):397–403

    Google Scholar 

  28. Iwashita T (2003) Method and apparatus for joining, Google Patents

  29. Feng Z, Santella M, David S, Steel R, Packer S, Pan T, Kuo M, Bhatnagar R (2005) Friction stir spot welding of advanced high-strength steels-a feasibility study, No. 0148-7191, SAE Technical Paper

  30. Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32(8–9):4461–4470

    Google Scholar 

  31. Freeney T, Sharma S, Mishra R (2006) Effect of welding parameters on properties of 5052 Al friction stir spot welds, No. 0148-7191, SAE Technical Paper

  32. Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823

    Google Scholar 

  33. Pathak N, Bandyopadhyay K, Sarangi M, Panda SK (2013) Microstructure and mechanical performance of friction stir spot-welded aluminum-5754 sheets. J Mater Eng Perform 22(1):131–144

    Google Scholar 

  34. Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47(15):2230–2236

    Google Scholar 

  35. Wang D-A, Lee S-C (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mater Process Technol 186(1):291–297

    Google Scholar 

  36. Wang D-A, Chen C-H (2009) Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets. J Mater Process Technol 209(1):367–375

    MathSciNet  Google Scholar 

  37. Awang M, Mucino VH (2010) Energy generation during friction stir spot welding (FSSW) of Al 6061-T6 plates. Mater Manuf Process 25(1–3):167–174

    Google Scholar 

  38. Rodrigues D, Loureiro A, Leitao C, Leal R, Chaparro B, Vilaça P (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des 30(6):1913–1921

    Google Scholar 

  39. Shen Z, Yang X, Yang S, Zhang Z, Yin Y (2014) Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy. Mater Des (1980–2015) 54:766–778

    Google Scholar 

  40. Mitlin D, Radmilovic V, Pan T, Chen J, Feng Z, Santella M (2006) Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Mater Sci Eng A 441(1):79–96

    Google Scholar 

  41. Su J-Q, Nelson T, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 51(3):713–729

    Google Scholar 

  42. Shen Z, Yang X, Zhang Z, Cui L, Li T (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486

    Google Scholar 

  43. Bozzi S, Helbert-Etter A, Baudin T, Criqui B, Kerbiguet J (2010) Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A 527(16):4505–4509

    Google Scholar 

  44. Liyanage T, Kilbourne J, Gerlich AP, North TH (2009) Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join 14(6):500–508

    Google Scholar 

  45. Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater Des 31(5):2305–2311

    Google Scholar 

  46. Chen YC, Gholinia A, Prangnell PB (2012) Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater Chem Phys 134(1):459–463

    Google Scholar 

  47. Da Silva A, Aldanondo E, Alvarez P, Arruti E, Echeverria A (2010) Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5). Sci Technol Weld Join 15(8):682–687

    Google Scholar 

  48. Fereiduni E, Movahedi M, Kokabi A (2015) Aluminum/steel joints made by an alternative friction stir spot welding process. J Mater Process Technol 224:1–10

    Google Scholar 

  49. Shi Y, Yue Y, Zhang L, Ji S, Wang Y (2018) Refill friction stir spot welding of 2198-T8 aluminum alloy. Trans Indian Inst Metals 71(1):139–145

    Google Scholar 

  50. Schilling C, dos Santos J (2004) Method and device for joining at least two adjoining work pieces by friction welding, Google Patents

  51. Zhao YQ, Liu HJ, Chen SX, Lin Z, Hou JC (2014) Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater Des (1980–2015) 62:40–46

    Google Scholar 

  52. Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding. Mater Des 132:283–294

    Google Scholar 

  53. Chen Y, Chen J, Shalchi Amirkhiz B, Worswick MJ, Gerlich AP (2015) Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds. Sci Technol Weld Join 20(6):494–501

    Google Scholar 

  54. Shen Z, Ding Y, Chen J, Gerlich A (2016) Comparison of fatigue behavior in Mg/Mg similar and Mg/steel dissimilar refill friction stir spot welds. Int J Fatigue 92:78–86

    Google Scholar 

  55. Shen Z, Chen J, Ding Y, Hou J, Shalchi Amirkhiz B, Chan K, Gerlich A (2017) Role of interfacial reaction on the mechanical performance of Al/steel dissimilar refill friction stir spot welds. Sci Technol Weld Join:1–16

  56. Sahu PK, Pal S, Pal SK, Jain R (2016) Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints. J Mater Process Technol 235:55–67

    Google Scholar 

  57. Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62

    Google Scholar 

  58. Habibnia M, Shakeri M, Nourouzi S, Givi MB (2015) Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol 76(5–8):819–829

    Google Scholar 

  59. Xue P, Ni D, Wang D, Xiao B, Ma Z (2011) Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Mater Sci Eng A 528(13–14):4683–4689

    Google Scholar 

  60. Fu B, Qin G, Li F, Meng X, Zhang J, Wu C (2015) Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol 218:38–47

    Google Scholar 

  61. Yue Y, Li Z, Ji S, Huang Y, Zhou Z (2016) Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J Mater Sci Technol 32(7):671–675

    Google Scholar 

  62. Ge Z, Gao S, Ji S, Yan D (2018) Effect of pin length and welding speed on lap joint quality of friction stir welded dissimilar aluminum alloys. Int J Adv Manuf Technol 98(1–9):1461–1469

    Google Scholar 

  63. Balakrishnan M, Leitão C, Arruti E, Aldanondo E, Rodrigues D (2018) Influence of pin imperfections on the tensile and fatigue behaviour of AA 7075-T6 friction stir lap welds. Int J Adv Manuf Technol:1–11

  64. Saeid T, Abdollah-Zadeh A, Sazgari B (2010) Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. J Alloys Compd 490(1–2):652–655

    Google Scholar 

  65. Chen Y, Nakata K (2009) Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Mater Des 30(9):3913–3919

    Google Scholar 

  66. Lee C-Y, Choi D-H, Yeon Y-M, Jung S-B (2009) Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs. Sci Technol Weld Join 14(3):216–220

    Google Scholar 

  67. Chowdhury S, Chen D, Bhole S, Cao X, Wanjara P (2012) Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Mater Sci Eng A 556:500–509

    Google Scholar 

  68. Sato Y, Shiota A, Kokawa H, Okamoto K, Yang Q, Kim C (2010) Effect of interfacial microstructure on lap shear strength of friction stir spot weld of aluminium alloy to magnesium alloy. Sci Technol Weld Join 15(4):319–324

    Google Scholar 

  69. Prasomthong S, Sangsiri P, Kimapong K (2015) Friction stir spot welding of AA5052 aluminum alloy and C11000 copper lap joint. Int J Adv Cult Technol 3(1):145–152

    Google Scholar 

  70. Triwanapong S, Kaewwichit J, Roybang W, Kimapong K (2015) Optimization of friction stir spot welding parameters of lap joint between AA1100 aluminum alloy and SGACD zinc-coated steel. Int J Adv Cult Technol 3(1):161–168

    Google Scholar 

  71. Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des 47:350–357

    Google Scholar 

  72. Figner MSG, Vallant R, Weinberger MST, Enzinger N, Schröttner H, Paśič H (2009) Friction stir spot welds between aluminium and steel automotive sheets: influence of welding parameters on mechanical properties and microstructure. Weld World 53(1–2):R13–R23

    Google Scholar 

  73. Hong SH, Sung S-J, Pan J (2015) Failure mode and fatigue behavior of dissimilar friction stir spot welds in lap-shear specimens of transformation-induced plasticity steel and hot-stamped boron steel sheets. J Manuf Sci Eng 137(5):051023

    Google Scholar 

  74. Piccini JM, Svoboda HG (2015) Effect of pin length on friction stir spot welding (FSSW) of dissimilar aluminum-steel joints. Procedia Mater Sci 9:504–513

    Google Scholar 

  75. Lin Y-C, Chen J-N (2015) Influence of process parameters on friction stir spot welded aluminum joints by various threaded tools. J Mater Process Technol 225:347–356

    Google Scholar 

  76. Shen Z, Ding Y, Gopkalo O, Diak B, Gerlich A (2018) Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys. J Mater Process Technol 252:751–759

    Google Scholar 

  77. Suhuddin U, Fischer V, Kroeff F, Dos Santos J (2014) Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater Sci Eng A 590:384–389

    Google Scholar 

  78. Dong H, Chen S, Song Y, Guo X, Zhang X, Sun Z (2016) Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets. Mater Des 94:457–466

    Google Scholar 

  79. Suhuddin U, Fischer V, Kostka A, dos Santos J (2017) Microstructure evolution in refill friction stir spot weld of a dissimilar Al–Mg alloy to Zn-coated steel. Sci Technol Weld Join 22(8):658–665

    Google Scholar 

  80. Ding Y, Shen Z, Gerlich A (2017) Refill friction stir spot welding of dissimilar aluminum alloy and AlSi coated steel. J Manuf Process 30:353–360

    Google Scholar 

  81. Fukada S, Ohashi R, Fujimoto M, Okada H Refill friction stir spot welding of dissimilar materials consisting of A6061 and hot dip zinc-coated steel sheets, Proc. Proceedings of the 1st international joint symposium on joining and welding. Elsevier, Amsterdam, pp 183–187

    Google Scholar 

  82. Reimann M, Gartner T, Suhuddin U, Göbel J, dos Santos JF (2016) Keyhole closure using friction spot welding in aluminum alloy 6061–T6. J Mater Process Technol 237:12–18

    Google Scholar 

  83. Cao JY, Wang M, Kong L, Guo LJ (2016) Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J Mater Process Technol 230:254–262

    Google Scholar 

  84. Rosendo T, Parra B, Tier M, Da Silva A, Dos Santos J, Strohaecker T, Alcântara N (2011) Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Mater Des 32(3):1094–1100

    Google Scholar 

  85. Oliveira P, Amancio-Filho S, Dos Santos J, Hage E (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64(19):2098–2101

    Google Scholar 

  86. Tier M, Rosendo T, dos Santos J, Huber N, Mazzaferro J, Mazzaferro C, Strohaecker T (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213(6):997–1005

    Google Scholar 

  87. Campanelli LC, Suhuddin UFH, Antonialli AÍS, dos Santos JF, de Alcantara NG, Bolfarini C (2013) Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds. J Mater Process Technol 213(4):515–521

    Google Scholar 

  88. Li Z, Ji S, Ma Y, Chai P, Yue Y, Gao S (2016) Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. Int J Adv Manuf Technol 86(5–8):1925–1932

    Google Scholar 

  89. Khandkar M, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174

    Google Scholar 

  90. Chao YJ, Qi X (1998) Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J Mater Process Manuf Sci 7:215–233

    Google Scholar 

  91. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125(1):138–145

    Google Scholar 

  92. Zhu X, Chao Y (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J Mater Process Technol 146(2):263–272

    Google Scholar 

  93. Hamilton C, Dymek S, Blicharski M (2008) A model of material flow during friction stir welding. Mater Charact 59(9):1206–1214

    Google Scholar 

  94. De Vuyst T, D’Alvise L, Simar A, De Meester B, Pierret S (2005) Finite element modelling of friction stir welding of aluminium alloy plates-inverse analysis using a genetic algorithm. Weld World 49(3–4):47–55

    Google Scholar 

  95. Simar A, Lecomte-Beckers J, Pardoen T, De Meester B (2006) Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. Sci Technol Weld Join 11(2):170–177

    Google Scholar 

  96. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615

    Google Scholar 

  97. Zhang H, Zhang Z, Chen J (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403(1):340–348

    Google Scholar 

  98. Kuykendall K, Nelson T, Sorensen C (2013) On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tools Manuf 74:74–85

    Google Scholar 

  99. Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50(2):143–155

    Google Scholar 

  100. Liechty B, Webb B (2008) Modeling the frictional boundary condition in friction stir welding. Int J Mach Tools Manuf 48(12–13):1474–1485

    Google Scholar 

  101. Trimble D, Monaghan J, O’donnell G (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61(1):9–12

    Google Scholar 

  102. Yu M, Li W, Li J, Chao Y (2012) Modelling of entire friction stir welding process by explicit finite element method. Mater Sci Technol 28(7):812–817

    Google Scholar 

  103. Mandal S, Rice J, Elmustafa AA (2008) Experimental and numerical investigation of the plunge stage in friction stir welding. J Mater Process Technol 203(1–3):411–419

    Google Scholar 

  104. Schmidt H, Hattel J (2004) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13(1):77

    Google Scholar 

  105. Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of friction stir welding. Model Simul Mater Sci Eng 17(7):075001

    Google Scholar 

  106. Jedrasiak P, Shercliff HR, Reilly A, McShane GJ, Chen Y, Wang L, Robson J, Prangnell P (2016) Thermal modeling of Al-Al and Al-Steel friction stir spot welding. J Mater Eng Perform 25(9):4089–4098

    Google Scholar 

  107. Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 77(9–12):1819–1829

    Google Scholar 

  108. Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based fem model for friction stir welding—model development. Mater Sci Eng A 419(1–2):389–396

    Google Scholar 

  109. Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42(14):1549–1557

    Google Scholar 

  110. Colegrove PA, Shercliff H (2004) Development of Trivex friction stir welding tool part 2–three-dimensional flow modelling. Sci Technol Weld Join 9(4):352–361

    Google Scholar 

  111. Hossfeld M, Roos E (2013) A new approach to modelling friction stir welding using the CEL method, Advanced Manufacturing Engineering and Technologies NEWTECH 2013 Stockholm, Sweden 27–30 October 2013, p 179

  112. Li K, Jarrar F, Sheikh-Ahmad J, Ozturk F (2017) Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process. Procedia Eng 207:574–579

    Google Scholar 

  113. Chu Q, Yang X, Li W, Vairis A, Wang W (2018) Numerical analysis of material flow in the probeless friction stir spot welding based on coupled Eulerian-Lagrangian approach. J Manuf Process 36:181–187

    Google Scholar 

  114. Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M (2013) A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast 48:189–204

    Google Scholar 

  115. Tartakovsky A, Grant G, Sun X, Khaleel M (2006) Modeling of friction stir welding (FSW) process with smooth particle hydrodynamics (SPH). SAE International, Warrendale

    Google Scholar 

  116. Yoshikawa G, Miyasaka F, Hirata Y, Katayama Y, Fuse T (2012) Development of numerical simulation model for FSW employing particle method. Sci Technol Weld Join 17(4):255–263

    Google Scholar 

  117. Padmanaban R, Kishore VR, Balusamy V (2014) Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Eng 97:854–863

    Google Scholar 

  118. Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72(5–8):607–617

    Google Scholar 

  119. Yaduwanshi D, Bag S, Pal S (2016) Numerical modeling and experimental investigation on plasma-assisted hybrid friction stir welding of dissimilar materials. Mater Des 92:166–183

    Google Scholar 

  120. Liu X, Lan S, Ni J (2015) Thermal mechanical modeling of the plunge stage during friction-stir welding of dissimilar Al 6061 to TRIP 780 steel. J Manuf Sci Eng 137(5):051017–051017

    Google Scholar 

  121. Liu X, Chen G, Ni J, Feng Z (2017) Computational fluid dynamics modeling on steady-state friction stir welding of aluminum alloy 6061 to TRIP steel. J Manuf Sci Eng 139(5):051004

    Google Scholar 

  122. Chen K, Liu X, Ni J (2017) Thermal-mechanical modeling on friction stir spot welding of dissimilar materials based on coupled Eulerian-Lagrangian approach. Int J Adv Manuf Technol 91(5–8):1697–1707

    Google Scholar 

  123. Li K, Aidun D, Marzocca P (2009) Time-varying functionally graded material thermal modeling of friction stir welding joint of dissimilar metals. ASM International, Russell Township, pp 731–735

    Google Scholar 

  124. Torres E. CFD modelling of dissimilar aluminum-steel friction stir welds, Proc. 9th International Conference on Trends in Welding Research, A$M

  125. Nandan R, Roy G, Lienert T, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895

    Google Scholar 

  126. Arora A, Nandan R, Reynolds A, DebRoy T (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater 60(1):13–16

    Google Scholar 

  127. Nandan R, Roy G, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans A 37(4):1247–1259

    Google Scholar 

  128. Nandan R, Roy G, Lienert T, DebRoy T (2006) Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join 11(5):526–537

    Google Scholar 

  129. Chen K, Liu X, Ni J (2017) Keyhole refilled friction stir spot welding of aluminum alloy to advanced high strength steel. J Mater Process Technol 249:452–462

    Google Scholar 

  130. Liu X, Lan S, Ni J (2015) Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol 219:112–123

    Google Scholar 

  131. Troitskii O, Likhtman V (1963) The anisotropy of the action of electron and radiation on the deformation of zinc single crystal in the brittle state. Kokl Akad Nauk 148:332–334

    Google Scholar 

  132. Ji S, Li Z, Wang Y, Ma L (2017) Joint formation and mechanical properties of back heating assisted friction stir welded Ti–6Al–4V alloy. Mater Des 113:37–46

    Google Scholar 

  133. Langenecker B (1966) Effects of ultrasound on deformation characteristics of metals. IEEE Transactions on Sonics and Ultrasonics 13(1):1–8

    Google Scholar 

  134. Ji S, Li Z, Ma L, Yue Y, Gao S (2016) Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy. Strength Mater 48(1):2–7

    Google Scholar 

  135. Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W (2018) Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-Joints. J Mater Sci Technol 34(1):163–172

    Google Scholar 

  136. Liu X, Wu C (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44

    Google Scholar 

  137. Curtis T, Widener C, West M, Jasthi B, Hovanski Y, Carlson B, Szymanski R, Bane W (2015) Friction stir scribe welding of dissimilar aluminum to steel lap joints. In: Friction stir welding and processing VIII. Springer, Berlin, pp 163–169

    Google Scholar 

  138. Jana S, Hovanski Y, Grant G, Mattlin K (2011) Effect of tool feature on the joint strength of dissimilar friction stir lap welds, Friction stir welding and processing VI, pp 205–211

  139. Mofid M, Abdollah-Zadeh A, Ghaini FM (2012) The effect of water cooling during dissimilar friction stir welding of Al alloy to mg alloy. Mater Des (1980–2015) 36:161–167

    Google Scholar 

  140. Evans WT, Gibson BT, Reynolds JT, Strauss AM, Cook GE (2015) Friction stir extrusion: a new process for joining dissimilar materials. Manuf Lett 5:25–28

    Google Scholar 

  141. Reza E-Rabby M, Ross K, Whalen S, Hovanski Y, McDonnell M (2017) Solid-state joining of thick-section dissimilar materials using a new friction stir dovetailing (FSD) process, Friction Stir Welding and Processing IX. Springer, Berlin, pp 67–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liu, X. & Ni, J. A review of friction stir–based processes for joining dissimilar materials. Int J Adv Manuf Technol 104, 1709–1731 (2019). https://doi.org/10.1007/s00170-019-03975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03975-w

Keywords

Navigation