Skip to main content
Log in

Experimental and smoothed particle hydrodynamics analysis of interfacial bonding between aluminum powder particles and aluminum substrate by cold spray technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study aims on the dominant bonding mechanism between aluminum powder particles and aluminum substrate evaluated both experimentally and numerically. Aluminum particles were deposited at different velocities onto an aluminum substrate by cold spray (CS) technology. The crater, bond, and interface morphology upon impact were characterized using scanning electron microscopy, focused ion beam processing, and transmission electron microscopy. Experimental results reveal that rebound phenomenon existed at high velocities and excellent contact is obtained above the critical velocity. This denotes that ideal deposition occurs at a certain particle velocity scale. Meanwhile, the numerical analysis was performed via smoothed particle hydrodynamics (SPH) method. The simulated particle deformation behavior agreed well with the experimentally evaluated impact morphology, which confirms the viability of the SPH procedure for CS simulation. Furthermore, the numerically calculated deposition range was in correspondence with the experimental findings. The analysis demonstrates that interfacial bonding between the powder particles and substrate is influenced by the adhesive intersurface forces of the contacting surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nélias D, Xie J, Walter-Le Berre H, Ichikawa Y, Ogawa K (2014) Simulation of the cold spray deposition process for aluminum and copper using Lagrangian, ALE and CEL methods. In: Jean MB (ed) Thermomechanical industrial processes: modeling and numerical simulation. Wiley, pp 321–358

  2. Kim J, Lee C (2016) Correlation of impact conditions, interface reactions, microstructural evolution, and mechanical properties in kinetic spraying of metals: a review. J Therm Spray Technol 25:1461–1489. https://doi.org/10.1007/s11666-016-0448-y

    Article  Google Scholar 

  3. Grujicic M, Saylor JR, Beasley DE, DeRosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219:211–227. https://doi.org/10.1016/S0169-4332(03)00643-3

    Article  Google Scholar 

  4. Grujicic M (2007) Particle/substrate interaction in the cold-spray bonding mechanism. Woodhead Publishing Ltd, London

    Google Scholar 

  5. Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  Google Scholar 

  6. Bae G, Xiong Y, Kumar S, Kang K, Lee C (2008) General aspects of interface bonding in kinetic sprayed coatings. Acta Mater 56:4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003

    Article  Google Scholar 

  7. Bae G, Kumar S, Yoon S, Kang K, Na H, Kim HJ, Lee C (2009) Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Mater 57:5654–5666. https://doi.org/10.1016/j.actamat.2009.07.061

    Article  Google Scholar 

  8. King PC, Bae G, Zahiri SH, Jahedi M, Lee C (2010) An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J Therm Spray Technol 19:620–634. https://doi.org/10.1007/s11666-009-9454-7

    Article  Google Scholar 

  9. Guetta S, Berger MH, Borit F, Guipont V, Jeandin M, Boustie M, Poitiers F, Ichikawa Y, Ogawa K (2009) Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol 18:331–342. https://doi.org/10.1007/s11666-009-9327-0

    Article  Google Scholar 

  10. Barradas S, Guipont V, Molins R, Jeandin M, Arrigoni M, Boustie M, Bolis C, Berthe L, Ducos M (2007) Laser shock flier impact simulation of particle-substrate interactions in cold spray. J Therm Spray Technol 116:548–556. https://doi.org/10.1007/s11666-007-9069-9

    Article  Google Scholar 

  11. Wu J, Yang J, Fang H, Yoon S, Lee C (2006) The bond strength of Al–Si coating on mild steel by kinetic spraying deposition. Appl Surf Sci 252:7809–7814. https://doi.org/10.1016/j.apsusc.2005.09.015

    Article  Google Scholar 

  12. Dykhuizen RC, Smith MF, Gilmore DL, Neiser RA, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8:559–564. https://doi.org/10.1361/105996399770350250

    Article  Google Scholar 

  13. Li WY, Liao H, Li CJ, Li G, Coddet C, Wang X (2006) On high velocity impact of micro-sized metallic particles in cold spraying. Appl Surf Sci 253:2852–2862. https://doi.org/10.1016/j.apsusc.2006.05.126

    Article  Google Scholar 

  14. Li WY, Gao W (2009) Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Appl Surf Sci 255:7878–7892. https://doi.org/10.1016/j.apsusc.2009.04.135

    Article  Google Scholar 

  15. Li WY, Shuo Y, Wang XF (2010) Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Appl Surf Sci 256:3725–3734. https://doi.org/10.1016/j.apsusc.2010.01.014

    Article  Google Scholar 

  16. Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32:305–322. https://doi.org/10.1016/S0045-7930(01)00105-0

    Article  MATH  Google Scholar 

  17. Hiermaier S, Konke D, Stilp AJ, Thoma K (1997) Computational simulation of the hypervelocity impact of Al-spheres on thin plates of different materials. Int J Impact Eng 20:363–374. https://doi.org/10.1016/S0734-743X(97)87507-0

    Article  Google Scholar 

  18. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Method Appl Mech Engl 139:375–405. https://doi.org/10.1016/S0045-7825(96)01090-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu J, Fang HY, Yoon SH, Kim HJ, Lee C (2006) The rebound phenomenon in kinetic spraying deposition. Scr Mater 54:665–669. https://doi.org/10.1016/j.scriptamat.2005.10.028

    Article  Google Scholar 

  20. Manap A, Okabe T, Ogawa K (2011) Computer simulation of cold sprayed deposition using smoothed particle hydrodynamics. Procedia Eng 10:1145–1150. https://doi.org/10.1016/j.proeng.2011.04.190

    Article  Google Scholar 

  21. Jonsén P, Pålsson BI, Häggblad HÅ (2012) A novel method for full-body modelling of grinding charges in tumbling mills. Miner Eng 33:2–12. https://doi.org/10.1016/j.mineng.2012.01.017

    Article  Google Scholar 

  22. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56:19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. Hague (Netherlands), pp 541–547

  24. Akarca SS, Song X, Altenhoff WJ, Alpas AT (2008) Deformation behaviour of aluminium during machining: modelling by Eulerian and smoothed-particle hydrodynamics methods. Proc IMechE L J Mater Des Appl 222:209–221. https://doi.org/10.1243/14644207JMDA187

    Article  Google Scholar 

  25. Manap A, Nooririnah O, Misran H, Okabe T, Ogawa K (2014) Experimental and SPH study of cold spray impact between similar and dissimilar metals. Surf Eng 30(5):335–341. https://doi.org/10.1179/1743294413Y.0000000237

    Article  Google Scholar 

  26. Kang K, Yoon S, Ji Y, Lee C (2008) Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process. Mater Sci Eng A-Struct 486:300–307. https://doi.org/10.1016/j.msea.2007.09.010

    Article  Google Scholar 

  27. Lee J, Shin S, Kim HJ, Lee C (2007) Effect of gas temperature on critical velocity and deposition characteristics in kinetic spraying. Appl Surf Sci 253:3512–3520. https://doi.org/10.1016/j.apsusc.2006.07.061

    Article  Google Scholar 

  28. Klinkov SV, Kosarev VF, Rein M (2005) Cold spray deposition: significance of particle impact phenomena. Aerosp Sci Technol 9:582–591. https://doi.org/10.1016/j.ast.2005.03.005

    Article  Google Scholar 

  29. Xu M, Willeke K (1993) Right-angle impaction and rebound of particles. J Aerosol Sci 24:19–30. https://doi.org/10.1016/0021-8502(93)90082-K

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial supports by the Malaysian Ministry Ministry of Higher Education (Grant Number: FRGS20160105)" to "Uniten (Grant Number: J510050795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abreeza Manap.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manap, A., Okabe, T., Ogawa, K. et al. Experimental and smoothed particle hydrodynamics analysis of interfacial bonding between aluminum powder particles and aluminum substrate by cold spray technique. Int J Adv Manuf Technol 103, 4519–4527 (2019). https://doi.org/10.1007/s00170-019-03846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03846-4

Keywords

Navigation