Skip to main content
Log in

A novel causation analysis method of machining defects for five-axis machine tools based on error spatial morphology of S-shaped test piece

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the acceptance process of newly developed five-axis machine tools (FAMTs), it is urgent for machine tool builders to understand the main causes of machining defects on S-shaped test piece. This paper proposes a novel causation analysis method based on error spatial morphology of S-shaped test piece to decouple the key geometric error parameters causing contour errors of test piece. Firstly, based on multi-body system (MBS) theory, tool axis surface error model of a FAMT is set up. In order to eliminate the effect of theoretical error on contour error of S-shaped test piece, the optimized tool path is planned based on the three-point tangential method. Then, the NC instruction is calculated, and error spatial model is established to characterize contour error of the test piece by considering tool setting position. As a basis, error spatial morphologies of test piece are drawn and the relationships between geometric error parameters and error spatial morphologies are analyzed. In order to decouple the key geometric error parameters affecting contour error of test piece, the causation analysis method of local error and global error are presented. After repairing the local and global key error parameters of the test piece obtained from these two analysis methods respectively, the local machining errors are reduced by more than 80%, and the global machining error is not beyond the tolerance. Finally, the cutting experiments of S-shaped test piece on the FAMT XKAS2525 × 60 are implemented. Error detection results of the cutting test piece are basically the same as that shown in error spatial morphologies of test piece, which verifies the correctness of error spatial model for the test piece. After compensating the global key error parameters obtained from the causation analysis method of global error in CNC system, the detection results of re-cutting test piece under the same conditions indicate the test piece has very few points that are not within the tolerance range, and detection results after compensation and global repaired results are almost similar, which verifies the feasibility and correctness of the proposed analysis method. Therefore, it is obvious that the presented method bridges between geometric characteristics of S-shaped test piece, geometric errors of machine tool, and machining defects of test piece and provides a comprehensive error analysis method in the acceptance and performance testing of FAMTs by using the S-shaped test piece. Thus, this study is of great significance for improving the accuracy evaluation method and enhancing the design accuracy of FAMTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Leete DL (1961) Automatic compensation of alignment errors in machine tools. Int J Mach Tool Des Res 1(4):293–324

    Article  Google Scholar 

  2. Chen D, Wang H, Pan R, Fan J, Cheng Q (2017) An accurate characterization method to tracing the geometric defect of the machined surface for complex five-axis machine tools. Int J Adv Manuf Technol 93:3395–3408

    Article  Google Scholar 

  3. Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98

    Article  Google Scholar 

  4. Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng 33:194–201

    Article  Google Scholar 

  5. NAS 979 (1969) Uniform cutting test – NAS series, metal cutting equipments

  6. NCG-2005 (2005) Test piece for 5-axis-simultaneous milling

  7. Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34:387–398

    Article  Google Scholar 

  8. Song Z, Cui Y (2011) S-shape detection test piece and a detection method for detecting the precision of the numerical control milling machine: US 8061052 B2

  9. Zhong L, Bi Q, Huang N, Wang Y (2018) Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. Int J Mach Tools Manuf 125:20–33

    Article  Google Scholar 

  10. Guan L, Mo J, Fu M, Wang L (2017) Theoretical error compensation when measuring an S-shaped test piece. Int J Adv Manuf Technol 93:2975–2984

    Article  Google Scholar 

  11. Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6(2):110–124

    Article  Google Scholar 

  12. Guan L, Mo J, Fu M, Wang L (2017) An improved positioning method for flank milling of S-shaped test piece. Int J Adv Manuf Technol 92:1349–1364

    Article  Google Scholar 

  13. Mou WP, Song ZY, Guo ZP, Tang LM (2012) A machining test to reflect dynamic machining accuracy of five-axis machine tools. Adv Mater Res 622-623:414–419

    Article  Google Scholar 

  14. Su Z, Wang L (2015) Latest development of a new standard for the testing of five-axis machine tools using an S-shaped test piece. Proc Inst Mech Eng B J Eng Manuf 229:1221–1228

    Article  Google Scholar 

  15. Jiang Z, Ding J, Song Z, Du L, Wang W (2016) Modeling and simulation of surface morphology abnormality of ‘S’ test piece machined by five-axis CNC machine tool. Int J Adv Manuf Technol 85:2745–2759

    Article  Google Scholar 

  16. Wang W, Jiang Z, Li Q, Tao W (2015) A new test part to identify performance of five-axis machine tool-part II validation of S part. Int J Adv Manuf Technol 79:739–756

    Article  Google Scholar 

  17. Wang H, Han F, Xing J, Zuo Y, Ji Y (2018) State prediction model of five-axis machine tools based on the “S” test piece surface finish. Procedia CIRP 71:380–385

    Article  Google Scholar 

  18. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-an update. CIRP Ann 57:660–675

    Article  Google Scholar 

  19. Hong C, Ibaraki S, Matsubara A (2011) Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools. Precis Eng 35:1–11

    Article  Google Scholar 

  20. Ramesh R, Mannan MA, Poo A (2000) Error compensation in machine tools - a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256

    Article  Google Scholar 

  21. Liu H, Li B, Wang X, Tan G (2011) Characteristics of and measurement methods for geometric errors in CNC machine tools. Int J Adv Manuf Technol 54:195–201

    Article  Google Scholar 

  22. Aguado S, Samper D, Santolaria J, Jose Aguilar J (2012) Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements. Int J Mach Tools Manuf 53:160–169

    Article  Google Scholar 

  23. Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68:2525–2534

    Article  Google Scholar 

  24. Li D, Feng P, Zhang J, Yu D, Wu Z (2014) An identification method for key geometric errors of machine tool based on matrix differential and experimental test. Proc Inst Mech Eng C J Mech Eng Sci 228:3141–3155

    Article  Google Scholar 

  25. Zhao L, Chen H, Yao Y, Diao G (2016) A new approach to improving the machining precision based on dynamic sensitivity analysis. Int J Mach Tools Manuf 102:9–21

    Article  Google Scholar 

  26. Liu X, Zhang X, Fang F, Liu S (2016) Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. Int J Mach Tools Manuf 105:45–57

    Article  Google Scholar 

  27. Fan J, Tang Y, Chen D, Wu C (2017) A geometric error tracing method based on the Monte Carlo theory of the five-axis gantry machining center. Adv Mech Eng 9:1–14

    Google Scholar 

  28. Guo Q, Sun Y, Guo D (2011) Analytical modeling of geometric errors induced by cutter runout and tool path optimization for five-axis flank machining. SCIENCE CHINA Technol Sci 54:3180–3190

    Article  MATH  Google Scholar 

  29. Senatore J, Landon Y, Rubio W (2008) Analytical estimation of error in flank milling of ruled surfaces. Comput Aided Des 40:595–603

    Article  Google Scholar 

  30. Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95:3413–3435

    Article  Google Scholar 

  31. Chen D, Dong L, Bian Y, Fan J (2015) Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. Int J Mach Tools Manuf 94:74–87

Download references

Acknowledgements

The authors appreciate the help provided by BEIJING NO.1 MACHINE TOOL CO., LTD, China in the experiment.

Funding

This work is financially supported by Key Scientific Research Project for Henan Province Higher School of China (No. 18A460036) and the National Natural Science Foundation of China (Nos. 51275014 and 11602229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ {\displaystyle \begin{array}{c}{e}_x={\delta}_{\mathrm{x}}(x)+{\delta}_{\mathrm{x}}(y)+{\delta}_{\mathrm{x}}(z)-{\varepsilon}_{\mathrm{z}}(x)y+{\varepsilon}_{\mathrm{y}}(x)z+{\varepsilon}_{\mathrm{y}}(y)z-{\varepsilon}_{\mathrm{x}\mathrm{y}}y+{\varepsilon}_{\mathrm{x}\mathrm{z}}z\\ {}+{\delta}_{\mathrm{x}}(c)\cos (c)-{\varepsilon}_{\mathrm{y}}(b)\sin (c)-{\delta}_{\mathrm{y}}(c)\sin (c)+{\varepsilon}_{\mathrm{y}}(x){q}_{3\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(x){q}_{4\mathrm{z}}\\ {}+{\varepsilon}_{\mathrm{y}}(x){q}_{5\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(x){q}_{6\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(y){q}_{4\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(y){q}_{5\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(y){q}_{6\mathrm{z}}+{\varepsilon}_{\mathrm{y}}(z){q}_{5\mathrm{z}}\\ {}+{\varepsilon}_{\mathrm{y}}(z){q}_{6\mathrm{z}}-{\varepsilon}_{\mathrm{z}}(x){q}_{3\mathrm{y}}-{\varepsilon}_{\mathrm{z}}(x){q}_{4\mathrm{y}}-{\varepsilon}_{\mathrm{z}}(x){q}_{5\mathrm{y}}-{\varepsilon}_{\mathrm{z}}(y){q}_{4\mathrm{y}}-{\varepsilon}_{\mathrm{z}}(y){q}_{5\mathrm{y}}\\ {}-{\varepsilon}_{\mathrm{z}}(z){q}_{5\mathrm{y}}+{\varepsilon}_{\mathrm{x}\mathrm{c}}{q}_{6\mathrm{z}}-{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{4\mathrm{y}}-{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{5\mathrm{y}}+{\varepsilon}_{\mathrm{x}\mathrm{z}}{q}_{5\mathrm{z}}+{\varepsilon}_{\mathrm{x}\mathrm{z}}{q}_{6\mathrm{z}}+{\delta}_{\mathrm{x}}(b)\cos (b)\cos (c)\\ {}+{\delta}_{\mathrm{z}}(b)\cos (c)\sin (b)-l\cos (c)\sin (b)-{\varepsilon}_{\mathrm{y}}(x)l\cos (b)-{\varepsilon}_{\mathrm{y}}(y)l\cos (b)\\ {}-{\varepsilon}_{\mathrm{y}}(z)l\cos (b)-{\varepsilon}_{\mathrm{x}\mathrm{c}}l\cos (b)-{\varepsilon}_{\mathrm{x}\mathrm{z}}l\cos (b)+{\varepsilon}_{\mathrm{y}}(c){q}_{6\mathrm{z}}\cos (c)-{\varepsilon}_{\mathrm{z}}(c){q}_{6\mathrm{y}}\cos (c)\\ {}-{\varepsilon}_{\mathrm{z}}(x){q}_{6\mathrm{y}}\cos (c)-{\varepsilon}_{\mathrm{z}}(y){q}_{6\mathrm{y}}\cos (c)-{\varepsilon}_{\mathrm{z}}(z){q}_{6\mathrm{y}}\cos (c)-{\delta}_{\mathrm{x}}(b){\varepsilon}_{\mathrm{y}}(x)\sin (b)\\ {}-{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{6\mathrm{y}}\cos (c)-{\varepsilon}_{\mathrm{x}}(b)l\sin (c)+{\varepsilon}_{\mathrm{x}}(c){q}_{6\mathrm{z}}\sin (c)-{\varepsilon}_{\mathrm{z}}(c){q}_{6\mathrm{x}}\sin (c)\\ {}-{\varepsilon}_{\mathrm{z}}(x){q}_{6\mathrm{x}}\sin (c)-{\varepsilon}_{\mathrm{z}}(y){q}_{6\mathrm{x}}\sin (c)-{\varepsilon}_{\mathrm{z}}(z){q}_{6\mathrm{x}}\sin (c)-{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{6\mathrm{x}}\sin (c)\\ {}-{\varepsilon}_{\mathrm{y}}(b)l\cos (b)\cos (c)-{\varepsilon}_{\mathrm{y}}(c)l\cos (b)\cos (c)-{\varepsilon}_{\mathrm{x}}(c)l\cos (b)\cos (c)\\ {}-{\varepsilon}_{\mathrm{bz}}l\cos (b)\sin (c)+{\varepsilon}_{\mathrm{z}}(c)l\sin (b)\sin (c)+{\varepsilon}_{\mathrm{z}}(x)l\sin (b)\sin (c)\\ {}+{\varepsilon}_{\mathrm{z}}(y)l\sin (b)\sin (c)+{\varepsilon}_{\mathrm{z}}(z)l\sin (b)\sin (c)+{\varepsilon}_{\mathrm{x}\mathrm{b}}l\sin (b)\sin (c)\\ {}+{\varepsilon}_{\mathrm{x}\mathrm{y}}l\sin (b)\sin (c)\end{array}} $$
$$ {\displaystyle \begin{array}{c}{e}_y={\delta}_{\mathrm{y}}(x)+{\delta}_{\mathrm{y}}(y)+{\delta}_{\mathrm{y}}(z)-{\varepsilon}_{\mathrm{x}}(x)z-{\varepsilon}_{\mathrm{x}}(y)z-{\varepsilon}_{\mathrm{y}\mathrm{z}}z+{\delta}_{\mathrm{y}}(b)\cos (c)\\ {}+{\delta}_{\mathrm{y}}(c)\cos (c)+{\delta}_{\mathrm{x}}(c)\sin (c)-{\varepsilon}_{\mathrm{x}}(x){q}_{3\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(x){q}_{4\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(x){q}_{5\mathrm{z}}\\ {}-{\varepsilon}_{\mathrm{x}}(x){q}_{6\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(y){q}_{4\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(y){q}_{5\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(y){q}_{6\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(z){q}_{5\mathrm{z}}-{\varepsilon}_{\mathrm{x}}(z){q}_{6\mathrm{z}}\\ {}+{\varepsilon}_{\mathrm{z}}(x){q}_{3\mathrm{x}}+{\varepsilon}_{\mathrm{z}}(x){q}_{4\mathrm{x}}+{\varepsilon}_{\mathrm{z}}(x){q}_{5\mathrm{x}}+{\varepsilon}_{\mathrm{z}}(y){q}_{4\mathrm{x}}+{\varepsilon}_{\mathrm{z}}(y){q}_{5\mathrm{x}}+{\varepsilon}_{\mathrm{z}}(z){q}_{5\mathrm{x}}\\ {}+{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{4\mathrm{x}}+{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{5\mathrm{x}}-{\varepsilon}_{\mathrm{y}\mathrm{c}}{q}_{6\mathrm{z}}-{\varepsilon}_{\mathrm{y}\mathrm{z}}{q}_{5\mathrm{z}}-{\varepsilon}_{\mathrm{y}\mathrm{z}}{q}_{6\mathrm{z}}+{\delta}_{\mathrm{x}}(b)\cos (b)\sin (c)\\ {}+{\delta}_{\mathrm{z}}(b)\sin (b)\sin (c)-{\varepsilon}_{\mathrm{x}}(x)l\cos (b)-{\varepsilon}_{\mathrm{x}}(y)l\cos (b)-{\varepsilon}_{\mathrm{x}}(z)l\cos (b)\\ {}+l{\varepsilon}_{\mathrm{x}}(b)\cos (c)-{\varepsilon}_{\mathrm{y}\mathrm{c}}l\cos (b)-{\varepsilon}_{\mathrm{y}\mathrm{z}}l\cos (b)-{\varepsilon}_{\mathrm{x}}(c){q}_{6\mathrm{z}}\cos (c)\\ {}+{\varepsilon}_{\mathrm{z}}(c){q}_{6\mathrm{x}}\cos (c)+{\varepsilon}_{\mathrm{z}}(x){q}_{6\mathrm{x}}\cos (c)+{\varepsilon}_{\mathrm{z}}(y){q}_{6\mathrm{x}}\cos (c)+{\varepsilon}_{\mathrm{z}}(z){q}_{6\mathrm{x}}\cos (c)\\ {}+{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{6\mathrm{x}}\cos (c)+{\varepsilon}_{\mathrm{y}}(c){q}_{6\mathrm{z}}\sin (c)-{\varepsilon}_{\mathrm{z}}(c){q}_{6\mathrm{y}}\sin (c)-{\varepsilon}_{\mathrm{z}}(x){q}_{6\mathrm{y}}\sin (c)\\ {}-{\varepsilon}_{\mathrm{z}}(y){q}_{6\mathrm{y}}\sin (c)-{\varepsilon}_{\mathrm{z}}(z){q}_{6\mathrm{y}}\sin (c)-{\varepsilon}_{\mathrm{x}\mathrm{y}}{q}_{6\mathrm{y}}\sin (c)-{\varepsilon}_{\mathrm{x}}(c)l\cos (b)\cos (c)\\ {}+{\varepsilon}_{\mathrm{bz}}l\cos (b)\cos (c)-{\varepsilon}_{\mathrm{y}}(b)l\cos (b)\sin (c)+{\varepsilon}_{\mathrm{y}}(c)l\cos (b)\sin (c)\\ {}-{\varepsilon}_{\mathrm{z}}(c)l\cos (c)\sin (b)-{\varepsilon}_{\mathrm{z}}(x)l\cos (c)\sin (b)-{\varepsilon}_{\mathrm{z}}(y)l\cos (c)\sin (b)\\ {}-{\varepsilon}_{\mathrm{z}}(z)l\cos (c)\sin (b)-{\varepsilon}_{\mathrm{x}\mathrm{b}}l\cos (c)\sin (b)-{\varepsilon}_{\mathrm{x}\mathrm{y}}l\cos (c)\sin (b)\end{array}} $$
$$ {\displaystyle \begin{array}{c}{e}_z={\delta}_{\mathrm{z}}(c)+{\delta}_{\mathrm{z}}(x)+{\delta}_{\mathrm{z}}(y)+{\delta}_{\mathrm{z}}(z)+{\varepsilon}_{\mathrm{x}}(x)y+{\delta}_{\mathrm{z}}(b)\cos (b)-{\delta}_{\mathrm{x}}(b)\sin (b)\\ {}+{\varepsilon}_{\mathrm{x}}(c){q}_{6\mathrm{y}}+{\varepsilon}_{\mathrm{x}}(x){q}_{3\mathrm{y}}+{\varepsilon}_{\mathrm{x}}(x){q}_{4\mathrm{y}}+{\varepsilon}_{\mathrm{x}}(x){q}_{5\mathrm{y}}+{\varepsilon}_{\mathrm{x}}(y){q}_{4\mathrm{y}}+{\varepsilon}_{\mathrm{x}}(y){q}_{5\mathrm{y}}\\ {}+{\varepsilon}_{\mathrm{x}}(z){q}_{5\mathrm{y}}-{\varepsilon}_{\mathrm{y}}(c){q}_{6\mathrm{x}}-{\varepsilon}_{\mathrm{y}}(x){q}_{3\mathrm{x}}-{\varepsilon}_{\mathrm{y}}(x){q}_{4\mathrm{x}}-{\varepsilon}_{\mathrm{y}}(x){q}_{5\mathrm{x}}-{\varepsilon}_{\mathrm{y}}(y){q}_{4\mathrm{x}}\\ {}-{\varepsilon}_{\mathrm{y}}(y){q}_{5\mathrm{x}}-{\varepsilon}_{\mathrm{y}}(z){q}_{5\mathrm{x}}-{\varepsilon}_{\mathrm{x}\mathrm{z}}{q}_{5\mathrm{x}}+{\varepsilon}_{\mathrm{y}\mathrm{z}}{q}_{5\mathrm{y}}-{\varepsilon}_{\mathrm{y}}(x){q}_{6\mathrm{x}}\cos (c)\\ {}-{\varepsilon}_{\mathrm{y}}(y){q}_{6\mathrm{x}}\cos (c)-{\varepsilon}_{\mathrm{y}}(z){q}_{6\mathrm{x}}\cos (c)-{\varepsilon}_{\mathrm{x}\mathrm{c}}{q}_{6\mathrm{x}}\cos (c)-{\varepsilon}_{\mathrm{x}\mathrm{z}}{q}_{6\mathrm{x}}\cos (c)\\ {}+{\varepsilon}_{\mathrm{y}\mathrm{c}}{q}_{6\mathrm{y}}\cos (c)+{\varepsilon}_{\mathrm{y}}(b)l\sin (b)+{\varepsilon}_{\mathrm{y}}(c)l\sin (b)+{\varepsilon}_{\mathrm{x}}(x){q}_{6\mathrm{x}}\sin (c)\\ {}+{\varepsilon}_{\mathrm{x}}(y){q}_{6\mathrm{x}}\sin (c)+{\varepsilon}_{\mathrm{x}}(z){q}_{6\mathrm{x}}\sin (c)+{\varepsilon}_{\mathrm{y}}(x){q}_{6\mathrm{y}}\sin (c)+{\varepsilon}_{\mathrm{y}}(y){q}_{6\mathrm{y}}\sin (c)\\ {}+{\varepsilon}_{\mathrm{y}}(z){q}_{6\mathrm{y}}\sin (c)+{\varepsilon}_{\mathrm{x}\mathrm{c}}{q}_{6\mathrm{y}}\sin (c)+{\varepsilon}_{\mathrm{x}\mathrm{z}}{q}_{6\mathrm{y}}\sin (c)+{\varepsilon}_{\mathrm{y}\mathrm{c}}{q}_{6\mathrm{x}}\sin (c)\\ {}+{\varepsilon}_{\mathrm{y}\mathrm{z}}{q}_{6\mathrm{x}}\sin (c)+{\varepsilon}_{\mathrm{y}}(x)l\cos (c)\sin (b)+{\varepsilon}_{\mathrm{y}}(y)l\cos (c)\sin (b)\\ {}+{\varepsilon}_{\mathrm{y}}(z)l\cos (c)\sin (b)+{\varepsilon}_{\mathrm{x}\mathrm{c}}l\cos (c)\sin (b)+{\varepsilon}_{\mathrm{x}\mathrm{z}}l\cos (c)\sin (b)\\ {}-{\varepsilon}_{\mathrm{x}}(x)l\sin (b)\sin (c)-{\varepsilon}_{\mathrm{x}}(y)l\sin (b)\sin (c)-{\varepsilon}_{\mathrm{x}}(z)l\sin (b)\sin (c)\\ {}-{\varepsilon}_{\mathrm{y}\mathrm{c}}l\sin (b)\sin (c)-{\varepsilon}_{\mathrm{y}\mathrm{z}}l\sin (b)\sin (c)+{\varepsilon}_{\mathrm{x}}(b){\varepsilon}_{\mathrm{y}}(z){\varepsilon}_{\mathrm{x}\mathrm{b}}l\cos (c)\end{array}} $$

Appendix 2

Table 7 Control points of S-shaped test piece (unit: mm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wu, C., Fan, J. et al. A novel causation analysis method of machining defects for five-axis machine tools based on error spatial morphology of S-shaped test piece. Int J Adv Manuf Technol 103, 3529–3556 (2019). https://doi.org/10.1007/s00170-019-03777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03777-0

Keywords

Navigation