Skip to main content

Advertisement

Log in

Tensile and fracture behavior in 6061-T6 and 6061-T4 aluminum alloys welded by pulsed metal transfer GMAW

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this investigation, mechanical properties, failure mechanism, and microstructural features of 6061-T6 and 6061-T4 aluminum alloy plates welded by gas metal arc welding in pulsed metal transfer mode are analyzed. Samples were submitted to a standard heat pretreatment of solubilization at 350 C (T4) which revealed the presence of β-phase (Al, Mg, Si) precipitates dissolved in the aluminum matrix. The size of precipitates grew up from 3.58 to 4.12 μ m after the solubilization, while the volumetric fraction increased from 2.35 to 2.97% and Rockwell hardness decreased from 82 HR15T to 61 HR15T as a consequence of the pretreatment process. After welding, the best mechanical properties in tensile strength were found in 6061-T4 samples, reaching 117.48 MPa, in contrast to the 6061-T6 sample processed with similar conditions which reached 73.57 MPa. X-ray energy dispersive spectroscopy revealed the presence of Mg and Cu, which are precursors of the formation of the hardening β-phase, which dissolves in the diffusion zone leading in lower hardness regions due to the diminishing of precipitates and the increase in the grain size; this phenomenon causes a ductile failure mechanism. The best parameters in this study were identified for the sample welded with a current of 250 A, a heat flux of 1.084 KJ/mm and 294 mm/min as feed rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchanan K, Colas K, Ribis J, López A, Garnier J (2017) Analysis of the metastable precipitates in peak-hardness aged Al-Mg- Si(-Cu) alloys with differing Si contents. Acta Mater 132:209–221. https://doi.org/10.1016/j.actamat.2017.04.037

    Article  Google Scholar 

  2. Farrell K (2012) Performance of aluminum in research reactors. In: Konings RJM (ed) Comprehensive Nuclear Materials. Elsevier Ltd, Amsterdam, pp 143–175. https://doi.org/10.1016/B978-0-08-056033-5.00113-0

  3. Patel A, Prasad B, Singh DK (2018) Effect of variable process parameter of MIG welding on aluminium alloy 6061-T6. IJARIIT 4:49–52

    Google Scholar 

  4. Sagar R, Kishor P, Kumar P (2016) A study of microstructures of gas metal arc welded aluminium alloy 6061-T6. IJIRST 3:115–123

    Google Scholar 

  5. Ambriz RR, Barrera G, García R, López VH (2009) A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA). Mater Des 30:2446–2453

    Article  Google Scholar 

  6. Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40:286–296. https://doi.org/10.1018/j.matdes.2008.10.125

    Article  Google Scholar 

  7. Missori S, Sili A (2000) Mechanical behaviour of 6082-T6 aluminium alloy welds. Metall Sci Technol 18:3–7

    Google Scholar 

  8. Kulkarni SS, Ramachandra S, Jagadeesh P (2014) A review on effect of welding parameters on mechanical properties for aluminum alloys using MIG welding. IJLTET 4:224–227

    Google Scholar 

  9. Bataineh O, Shoubaki AL, Barqawi O (2012) Optimising process conditions in MIG welding of aluminum alloys through factorial design experiments. In: Proceeding. International conference Latest Trends in Environmental and Manufacturing Engineering

  10. Mikell P (2007) Fundamentos de manufactura moderna. In: Mcgraw-Hill (ed) Proceso de soldadura. 3rd edn. Interamericana editores, México, pp 705–744

  11. Torres S (2002) Evolución microestructural de la aleación de aluminio 6061 durante el proceso de soldadura MIG. Ingenierí,a y Desarrollo 12:52–65

    Google Scholar 

  12. Fuheng N, Honggang D, Su C h, Li Peng, Leyou W, Zhouxing Z, Xintao L, Hai Z (2018) Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. J Mater Sci Technol 34:551–560. https://doi.org/10.1016/j.jmst.2016.11.004

    Article  Google Scholar 

  13. Sasabe S (2010) Effect of Mn on welding liquation micro-cracking in heat affected zone of 6082 aluminum alloy. J Jpn Inst L Metals (JILM) 60:5213–219

    Google Scholar 

  14. Myhr OR, Grong O, Andersen SJ (2001) Modelling of the age hardening behavior of Al–Mg–Si alloys Hydro Automotive Structures. Acta mater 49:65–75. https://doi.org/10.1016/S1359-6454(00)00301-3

    Article  Google Scholar 

  15. Fallah V, Langelier B, Ofori-Opoku N, Raeisinia B, Provatas N, Esmaeili S (2016) Cluster evolution mechanisms during aging in Al–Mg–Si alloys. Acta Mater 103:290–300. https://doi.org/10.1016/j.actamat.2015.09.027

    Article  Google Scholar 

  16. Sagar R, Kolhe KP, Kumar P (2016) Prediction of mechanical properties of Al Alloy 6061-T6 by using GMAW. International Journal of Current Engineering and Technology 4:341–347. http://inpressco.com/category/ijcet

    Google Scholar 

  17. Kaushal Ch, Sharma L (2015) To determine effects of gas metal arc welding (GMAW) parameters on mechanical properties of aluminium alloy. IJIRSET 4:4564–4572. https://doi.org/10.15680/ijirset.2015.0406069

    Google Scholar 

  18. ASTM E3-11 (2017) Standard guide for preparation of metallographic specimens

  19. ASTM E-407–(99), Standard practice for microetching metals and alloys

  20. ASTM E-92-17 Standard test methods for Vickers hardness and knoop hardness of metallic materials

  21. ASTM E-8/E8M-(16a), Standard test methods for tension testing of metallic mmaterials

  22. American Welding Society (2003) AWS D1.2/D1.2M: Estructural welding code aluminum, 5th edn. (AWS) American Welding Society, Miami, pp 83–87

    Google Scholar 

  23. Fallah V, Korinek A, Ofori-Opoku N, Raeisinia B, Gallerneault M, Provatas N, Esmaeilia S (2015) Atomic-scale pathway of early-stage precipitation in Al–Mg–Si alloys. Acta Mater 82:457–467. https://doi.org/10.1016/j.actamat.2014.09.004

    Article  Google Scholar 

  24. Sevim I, Hayat F, Kaya Y, Kahraman N, Şahin S (2013) The study of MIG weldability of heat-treated aluminum alloys. Int J Adv Manuf Technol 66:1825–1834. https://link.springer.com/article/10.1007/s00170-012-4462-z

    Article  Google Scholar 

  25. Hasting HS, Froseth AG, Andersen SJ, Vissers R (2009) Composition of β precipitates in Al, Mg, Si alloys by atom probe tomography and first principles calculations. J Appl Phys 106:12357–12361. https://doi.org/10.1063/1.3269714

    Article  Google Scholar 

  26. Ehlers FJH (2014) Ab initio interface configuration determination for in β Al,Mg,Si: beyond the constraint of a preserved precipitate stoichiometry. Comp Mater Sci 81:617–629. https://doi.org/10.1016/j.commatsci.2013.08.037

    Article  Google Scholar 

  27. Ehlers FJH, Dumoulin S, Holmestad R (2014) 3D modelling of in β Al,Mg,Si: towards an atomistic level ab initio based examination of a full precipitate enclosed in a host lattice. Comp Mater Sci 91:200–210. https://doi.org/10.1016/j.commatsci.2014.04.060

    Article  Google Scholar 

  28. Ninive PH, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara CD, Andersen SJ, Friis Holmestad JR, OM Løvvik (2014) Detailed atomistic insight into the β″ phase in Al,Mg,Si alloys. Acta Mater 69:126–134. https://doi.org/10.1016/j.actamat.2014.01.052

    Article  Google Scholar 

  29. Weng Y, Zhihong J, Ding L, Pan Y, Liu Y, Liu Q (2017) A Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys. J Alloys Compd 695:2444–2452. https://doi.org/10.1016/j.jallcom.2016.11.140

    Article  Google Scholar 

  30. Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61:818–843. https://doi.org/10.1016/j.actamat.2012.10.044

    Article  Google Scholar 

  31. Starink MJ, Cao LF, Rometsch PA (2012) Predicting grain refinement by cold severe plastic deformation in alloys using volume averaged dislocation generation. Acta Mater 60:4194–4207. https://doi.org/10.1016/j.actamat.2009.08.006

    Article  Google Scholar 

  32. Pogatscher S, Antrekowitsch H, Leitner H, Ebner T, Uggowitzer PJ (2011) Mechanisms controlling the artificial aging of Al–Mg–Si Alloys. Acta Mater 59:3352–3363. https://doi.org/10.1016/j.actamat.2011.02.010

    Article  Google Scholar 

  33. Dawood HI, Mohammed KS, Rajab YM (2014) Advantages of the green solid state FSW over the conventional GMAW process. Advances in Materials Science and Engineering Volume 2014:1–10. https://doi.org/10.1155/2014/105713

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the Secretariat of Public Education, Mexico, by means of the SEP-PRODEP project UACOAH-PTC-430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro Guzmán.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, I., Granda, E., Vargas, B. et al. Tensile and fracture behavior in 6061-T6 and 6061-T4 aluminum alloys welded by pulsed metal transfer GMAW. Int J Adv Manuf Technol 103, 2553–2562 (2019). https://doi.org/10.1007/s00170-019-03673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03673-7

Keywords

Navigation