Skip to main content
Log in

Production of high-performance multi-layer fine-fibrous filter material by application of material extrusion–based additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study addresses a new approach to production of multi-layer fine-fibrous filter material by application of material extrusion–based additive manufacturing (MEB-AM). By the example of polypropylene/copolyamide (PP/CPA), the ability of a fibrous composite structure formation in the initial strands is demonstrated. It is shown that a change in the size of filter grid cells and the extrusion pressure allows control of the diameter of PP fibrils. It is found that multi-layered composite films formed by MEB-AM of the strands retain the structure inherent in the strands. A polypropylene precision filter material has been produced by extraction of a matrix polymer from composite films. The achieved filter retention is about 100% (for the particles of 0.3–1.0 μm in size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas S, Mishra R, Kalarikka N. Micro and nano fibrillar composites (mfcs and nfcs) from polymer blends. Woodhead Publishing, 2017, 372 p

  2. Bhattacharyya D, Fakirov S. Synthetic polymer-polymer composites. Hanser Publishers, Munich, 2012, 797 p

  3. Zhang X, Geven MA, Grijpma DW, Gautrot JE, Peijs T (2016) Polymer-polymer composites for the design of strong and toughdegradable biomaterials. Mater Today Commun 8:53–63

    Article  Google Scholar 

  4. Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54(17):4617–4628

    Article  Google Scholar 

  5. Utraсki LA, Wilkie CA (2014) Polymer blends handbook. London: Springer New York Heidelberg Dordrecht, 2373 р

  6. Muralisrinivasan NS (2017) Polymer blends and composites: chemistry and technology. John Wiley & Sons, 352 p

  7. Li W, Schlarb AK, Evstatiev M (2009) Study of PET/PP/TiO2 microfibrillar-structured composites: part 1. Preparation, morphology and dynamic mechanical analysis of fibrillized blends. J Appl Polym Sci 113:1471–1479

    Article  Google Scholar 

  8. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R (2013) Tough blends of poly(lactide) and amorphous poly([R, S]-3-hydroxy butyrate)–morphology and properties. Eur Polym J 49(11):3630–3641

    Article  Google Scholar 

  9. Xie L, Xu H, Niu B, Ji X, Chen J, Li ZM, Hsiao BS, Zhong GJ (2014) Unprecedented access to strong and ductile poly(lactic acid) by introducing in situ nanofibrillar poly(butylenes succinate) for green packaging. Biomacromolecules 15:4054–4064

    Article  Google Scholar 

  10. Yu V, Morawiec J, Galeski A (2016) Ductility of polylactide composites reinforced with poly(butylenes succinate) nanofibers. Compos Part A 90:218–224

    Article  Google Scholar 

  11. Sangroniz L, Palacios JK, Fernandez M, Eguiazabal JI, Santamaria A, Muller AJ (2016) Linear on non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosolica and its relationship with the morphology. Eur Polym J 83:10–21

    Article  Google Scholar 

  12. Pan Z, Zhu M, Chen Y, Chen L, Wu W, Yu C, Xu Z, Cheng L (2010) The variation of fibrils’ number in the sea-island fiber – low density polyethylene/polyamide 6. Fibers Polym 11(3):494–499

    Article  Google Scholar 

  13. Huang Y, He Y, Ding W, Kunxiao Y, Yu D, Xin C (2017) Improved viscoelastic, thermal and mechanical properties of in situ microfibrillar polypropylene/polyamide 6,6 composites via direct extrusion using a triple-screw extruder. RSC Adv 7:5030–5038

    Article  Google Scholar 

  14. Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly(tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88(1):171–182

    Article  Google Scholar 

  15. Kuzmanovic M, Delva L, Cardon L, Ragaert K (2016) The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites. Polymers 8:355

    Article  Google Scholar 

  16. Kuzmanovic M, Delva L, Mi D, Martins CI, Cardon L, Ragaert K (2018) Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA. Polymers 10:291

    Article  Google Scholar 

  17. Rezanova NM, Plavan VP, Rezanova VG, Bohatyryov VM (2016) Regularities of producing of nano-filled polyropylene microfibers. Vlakna Textil 4:3–8

    Google Scholar 

  18. Rezanova NM, Rezanova VG, Plavan VP, Viltsaniuk OO (2017) The influence of nano-additives on the formation of matrix-fibrillar structure in the polymer mixture melts and on the properties of complex threads. Vlakna Textil 2:37–42

    Google Scholar 

  19. Tsebrenko MV, Rezanova VG, Tsebrenko IA (2010) Polypropylene microfibers with filler in nano state. Chem Chem Technol 4(3):253–260

    Google Scholar 

  20. Doan VA, Masayuki Y (2013) Interphase transfer of nanofillers and functional liquid between immiscible polymer pairs. Rec Res Devel Mat Sci 10:59–88

    Google Scholar 

  21. Shields RJ, Bhattacharyya D, Fakirov S (2008) Fibrillar polymer-polymer composites: morphology, properties and application. J Mater Sci 43:6758–6770

    Article  Google Scholar 

  22. Tran NHA, Brünig H, Landwehr MA, Vogel R, Heinrich G (2016) Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part II: influences of extrusion rate on morphological changes of PLA/PVA through a capillary die. J Appl Polym Sci 133:442–573

    Google Scholar 

  23. Tran NHA, Brünig H, Boldt R, Heinrich G (2014) Morphology development from rod-like to nanofibrillar structures of dispersed poly (lactic acid) phase in a binary blend with poly (vinyl alcohol) matrix along the spinline. Polymer 55(24):6354–6363

    Article  Google Scholar 

  24. Dickenson Ch. Filters and filtration. Elsevier Advanced Technology, Oxford, 1992, 780 p

  25. Comprehensive material processing /Ed. M.S.J.Hashmi /Vol.10 – Advances in additive manufacturing and tooling, Elsevier, Ltd., 2014, 5474 p

  26. Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C (2017) Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci 134:45401

    Article  Google Scholar 

  27. Spoerk M, Sapkota J, Weingrill G, Fischinger T, Arbeiter F, Shrinkage HC (2017) Warpage optimization of expanded-perlite-filled polypropylene composites in extrusion-based additive manufacturing. Macromol Mater Eng 302:1700143

    Article  Google Scholar 

  28. Spoerk M, Arbeiter F, Raguž I, Weingrill G, Fischinger T, Traxler G, Schuschnigg S, Cardon L, Holzer C (2018) Polypropylene filled with glass spheres in extrusion-based additive manufacturing: effect of filler size and printing chamber temperature. Macromol Mater Eng 303:1800179

    Article  Google Scholar 

  29. Spoerk M, Gonzalez-Gutierrez J, Lichal C, Cajner H, Berger GR, Schuschnigg S, Cardon L, Holzer C (2018) Optimisation of the adhesion of polypropylene-based materials during extrusion-based additive manufacturing. Polymers 10:490

    Article  Google Scholar 

  30. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776

    Article  Google Scholar 

  31. Spoerka M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C, Sapkota J (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Composites Part A 113:95–104

    Article  Google Scholar 

  32. Tsebrenko MV (1983) Fibrillation of the mixtures of crystallizable, amorphous and poorly crystalline polymers. Intern J Polym Mater 10:103–119

    Article  Google Scholar 

  33. Tsebrenko MV, Yudin AV, Ablasova TI, Vinogradov GV (1976) Mechanism of fibrillation in the flow of molten polymer mixtures. Polymer 17:831–834

    Article  Google Scholar 

  34. Han CD. Multiphase in polymer processing. New York: Academic Press, 1981. 459 p

  35. Utracki L, Bakerdjiane Z, Kamal M. A method for the measurement of the true die swell of polymer melts. J Appl Polym Sci 1975;19(2):481–501

  36. La Mantia FP, Valenza A, Paci M, Magagnini PL (1990) Rheology-morphology relationships in nylon 6/liquid-crystalline polymer blends. Polym Eng Sci 1(30):7–12

    Article  Google Scholar 

  37. Polymer Blends /Ed. by Paul D.R., Bucknall C.B. – New York: John Wiley & Sons, Inc. – 2000, V.1. – 618 p

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vozniak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloshenko, V.A., Plavan, V.P., Rezanova, N.M. et al. Production of high-performance multi-layer fine-fibrous filter material by application of material extrusion–based additive manufacturing. Int J Adv Manuf Technol 101, 2681–2688 (2019). https://doi.org/10.1007/s00170-018-3152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-3152-x

Keywords

Navigation