Skip to main content
Log in

A chatter mitigation technique in milling based on H-ADDPMS and piezoelectric stack actuators

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter is a kind of self-excited vibration which may occur in the milling process and has several negative effects such as poor surface quality and severe tool wear. This paper presents an active chatter control method based on H almost disturbance decoupling problem with measurement feedback and with internal stability (H-ADDPMS) and piezoelectric stack actuators. First, a milling process model considering regenerative effect is constructed to find out the milling conditions when chatter occurs. Then, the whole active control system and constructing procedure of an active controller based on H-ADDPMS is proposed. Next, the milling process is simulated and the H-ADDPMS controller is calculated based on cutting force coefficient identification, frequency response experiments, and modal analysis technique. Finally, the active control experiment is carried out on a computer numerical control (CNC) milling machine to verify the feasibility and effectiveness of the proposed active control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor FW (1906) On the art of cutting metals. American Society of Mechanical Engineers pp. 248

  2. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tool Manu 69(3):11–19

    Article  Google Scholar 

  3. Cao H, Niu L, Xi S, Chen X (2018) Mechanical model development of rolling bearing-rotor systems: a review. Mech Syst Signal Process 102:37–58

    Article  Google Scholar 

  4. Jiang S, Zheng S (2010) A modeling approach for analysis and improvement of spindle-drawbar-bearing assembly dynamics. Int J Mach Tool Manu 50(1):131–142

    Article  Google Scholar 

  5. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376

    Article  Google Scholar 

  6. Cao H, Li B, He Z (2012) Chatter stability of milling with speed-varying dynamics of spindles. Int J Mach Tool Manu 52(1):50–58

    Article  Google Scholar 

  7. Cao H, Zhou K, Chen X, Zhang X (2017) Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 92(9–12):4387–4397

    Article  Google Scholar 

  8. Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection based on synchrosqueezing transform and statistical indicators in milling process. Int J Adv Manuf Technol 95(1):1–12

    Google Scholar 

  9. Cao H, Yue Y, Chen X, Zhang X (2016) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol:1–9

  10. Balachandran B (2001) Nonlinear dynamics of milling processes. Philosophical Transactions Mathematical Physical & Engineering Sciences 359(1781):793–819

    Article  MATH  Google Scholar 

  11. Long X, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(16):1151–1168

    Article  MathSciNet  MATH  Google Scholar 

  12. Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205(7):199–203

    Google Scholar 

  13. Yang Y, Zhang WH, Ma YC, Wan M (2016) Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Mach Tool Manu 109:36–48

    Article  Google Scholar 

  14. Cao H, Zhang X, Chen X (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52

    Article  Google Scholar 

  15. Balachandran B, Zhao MX (2000) A mechanics based model for study of dynamics of milling operations. Meccanica 35(2):89–109

    Article  MATH  Google Scholar 

  16. Wang C, Zhang X, Liu Y, Cao H, Chen X (2017) Stiffness variation method for milling chatter suppression via piezoelectric stack actuators. Int J Mach Tool Manu 124

  17. Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann 65(2):785–808

    Article  Google Scholar 

  18. Preumont A (1997) Vibration control of active structures, vol 2. Kluwer academic publishers, Dordrecht

    Book  MATH  Google Scholar 

  19. Dohner JL, Hinnerichs TD, Lauffer JP, Kwan CM, Regelbrugge ME, Shankar N (1997) Active chatter control in a milling machine. In Smart structures and materials 1997: industrial and commercial applications of smart structures technologies (Vol. 3044, pp. 281–295). International Society for Optics and Photonics

  20. van Dijk NJ, van de Wouw N, Doppenberg EJ, Oosterling HA, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917

    Article  Google Scholar 

  21. Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 1: modeling and control design. Control Eng Pract 24:156–166

    Article  Google Scholar 

  22. Huang T, Chen Z, Zhang HT, Ding H (2015) Active control of an active magnetic bearings supported spindle for chatter suppression in milling process. J Dyn Syst Meas Control 137(11):111003

    Article  Google Scholar 

  23. Wang C, Zhang X, Cao H, Chen X, Xiang J (2018) Milling stability prediction and adaptive chatter suppression considering helix angle and bending. Int J Adv Manuf Technol 95(9–12):3665–3677

    Article  Google Scholar 

  24. Sallese L, Innocenti G, Grossi N, Scippa A, Flores R, Basso M, Campatelli G (2017) Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy. Int J Adv Manuf Technol 89(9–12):2771–2787

    Article  Google Scholar 

  25. Weiland S, Willems JC (1989) Almost disturbance decoupling with internal stability. IEEE Trans Autom Control 34(3):277–286

    Article  MathSciNet  MATH  Google Scholar 

  26. Ozcetin HK, Saberi A, Sannuti P (1992) Design for H∞ almost disturbance decoupling problem with internal stability via state or measurement feedback—singular perturbation approach. Int J Control 55(4):901–944

    Article  MathSciNet  MATH  Google Scholar 

  27. Scherer C (1992) H_∞-optimization without assumptions on finite or infinite zeros. SIAM J Control Optim 30(1):143–166

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen BM, Lin Z, Hang CC (1998) Design for general Hinfinity almost disturbance decoupling problem with measurement feedback and internal stability an eigenstructure assignment approach. Int J Control 71(4):653–685

    Article  MATH  Google Scholar 

  29. Lin Z, Chen BM (2000) Solutions to general H∞ almost disturbance decoupling problem with measurement feedback and internal stability for discrete-time systems. Automatica 36(8):1103–1122

    Article  MathSciNet  MATH  Google Scholar 

  30. Wan M, Zhang WH, Dang JW, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tool Manu 50(1):29–41

    Article  Google Scholar 

  31. Wan M, Wang YT, Zhang WH, Yang Y, Dang JW (2011) Prediction of chatter stability for multiple-delay milling system under different cutting force models. Int J Mach Tool Manu 51(4):281–295

    Article  Google Scholar 

  32. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802

    Article  Google Scholar 

  33. Sannuti P, Saberi, A. (1986) A special coordinate basis of multivariable linear systems-finite and infinite zero structure. In Decision and control, 1986 25th IEEE Conference on (Vol. 25, pp. 2181–2186). IEEE

  34. Saberi, Sannuti P (1990) Squaring down of non-strictly proper systems. Int J Control 51(3):621–629

    Article  MATH  Google Scholar 

  35. Chen BM (1998) On properties of the special coordinate basis of linear systems. Int J Control 71(6):981–1003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 51575423, 11772244), the Fundamental Research Funds for Central University, and the Natural Science Foundation of Shaanxi Province (2017JM5120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongrui Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Cao, H., Zhang, X. et al. A chatter mitigation technique in milling based on H-ADDPMS and piezoelectric stack actuators. Int J Adv Manuf Technol 101, 2233–2248 (2019). https://doi.org/10.1007/s00170-018-2913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2913-x

Keywords

Navigation