Skip to main content
Log in

Contour error pre-compensation for five-axis high speed machining: offline gain adjustment approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents an offline gain adjustment (OGA) approach to reduce contour error in five-axis high speed machining. The proposed contour error formulation is based on the estimation of tool contact points and the OGA is inspired from the idea of model predictive control (MPC). The control gains used in the position loop of servo drives are optimally adjusted offline to reduce the contour error for the considered trajectory. The obtained gain profiles are computed preserving axis kinematic limitations, stability criterion of servo drives, and the motor current constraints. The OGA is developed thanks to a validated machine simulator. The simulation results prove that the OGA reduces significantly the contour error in five-axis high speed machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool calibrations and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  2. Hu P, Chen L, Tang K (2017) Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces. Comput Aided Des 83:33–50

    Article  Google Scholar 

  3. Huang J, Du X, Zhu LM (2018) Real-time local smoothing for five-axis linear tool-path considering smoothing error constraints. Int J Mach Tools Manuf 124:67–79

    Article  Google Scholar 

  4. Erkorkmaz K, Chen QGC, Zhao MY, Beudaert X, Gao XS (2017) Linear programming and windowing based feedrate optimization for spline toolpaths. CIRP Ann 66(1):393–396

    Article  Google Scholar 

  5. Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Ann 63(2):585–605

    Article  Google Scholar 

  6. Altintas Y, Erkorkmaz K, Zhu WH (2000) Sliding mode controller design for high speed feed drives. CIRP Ann Manuf Technol 49(1):265–270

    Article  Google Scholar 

  7. Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part III: high speed tracking and contouring control of feed drives. Int J Mach Tools Manuf 41(11):1637–1658

    Article  Google Scholar 

  8. Dumur D, Susanu M, Aubourg M (2008) Complex form machining with axis drive predictive control. CIRP Ann Manuf Technol 57(1):399–402

    Article  Google Scholar 

  9. Tang L, Landers RG (2013) Multiaxis contour control - the state of the art. IEEE Trans Control Syst Technol 21(6):1997–2010

    Article  Google Scholar 

  10. Koren Y, Lo CC (1991) Variable-gain cross-coupling controller for contouring. CIRP Ann Manuf Technol 40(1):371–374

    Article  Google Scholar 

  11. Chiu GC, Tomizuka M (2011) Contouring control of machine tool feed drive systems: a task coordinate frame approach. IEEE Trans Control Syst Technol 9(1):130–139

    Article  Google Scholar 

  12. Altintas Y, Sencer B (2010) High speed contouring control strategy for five-axis machine tools. CIRP Ann Manuf Technol 59(1):417–420

    Article  Google Scholar 

  13. Yang J, Altintas Y (2015) A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. Int J Mach Tools Manuf 88:9–23

    Article  Google Scholar 

  14. Cheng MY, Su KH (2009) Contouring accuracy improvement using a tangential contouring controller with a fuzzy logic-based feedrate regulator. Int J Adv Manuf Technol 41(1):75–85

    Article  Google Scholar 

  15. El Khalick MA, Uchiyama N (2011) Discrete-time model predictive contouring control for biaxial feed drive systems and experimental verification. Mechatronics 21(6):918–926

    Article  Google Scholar 

  16. Yang S, Ghasemi AH, Lu X, Okwudire CE (2015) Precompensation of servo contour errors using a model predictive control framework. Int J Mach Tools Manuf 98:50–60

    Article  Google Scholar 

  17. Erkorkmaz K, Yeung CH, Altintas Y (2006) Virtual CNC system. Part II. High speed contouring application. Int J Mach Tools Manuf 46(10):1124–1138

    Article  Google Scholar 

  18. Khoshdarregi MR, Tappe S, Altintas Y (2014) Integrated five-axis trajectory shaping and contour error compensation for high-speed CNC machine tools. IEEE/ASME Trans Mechatron 19(6):1859–1871

    Article  Google Scholar 

  19. Zhang K, Yuen A, Altintas Y (2013) Pre-compensation of contour errors in five-axis CNC machine tools. Int J Mach Tools Manuf 74:1–11

    Article  Google Scholar 

  20. Jaen-Cuellar AY, Romero-troncoso R, de J, Morales-Velazquez L, Osornio-Rios RA (2013) PID-controller tuning optimization with genetic algorithms in servo systems. Int J Adv Robot Syst 10(324):1–14

    Google Scholar 

  21. Le Flohic J, Paccot F, Bouton N, Chanal H (2018) Model-based method for feed drive tuning applied to serial machine tool. The International Journal of Advanced Manufacturing Technology 95(1–4):735–745

    Article  Google Scholar 

  22. Susanu M, Dumur D (2006) Hierarchical predictive control within an open architecture virtual machine tool. CIRP Ann Manuf Technol 55(1):389–392

    Article  Google Scholar 

  23. Prévost D, Lavernhe S, Lartigue C, Dumur D (2011) Feed drive modelling for the simulation of tool path tracking in multi-axis high speed machining. Int J Mechatron Manuf Syst 4(3-4):266–284

    Google Scholar 

  24. Beudaert X, Lavernhe S, Tournier C (2014) Direct trajectory interpolation on the surface using an open CNC. Int J Adv Manuf Technol 75(1):535–546

    Article  Google Scholar 

  25. Duong TQ, Rodriguez-Ayerbe P, Lavernhe S, Tournier C, Dumur D (2016) Offline gain adjustment with constraints for contour error reduction in high speed milling. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics, pp 201–206

  26. Duong TQ, Rodriguez-Ayerbe P, Lavernhe S, Tournier C, Dumur D (2016) Receding horizon based offline gain adjustment for contour error reduction in high speed milling. Procedia CIRP- 10th CIRP Conf Intell Comput Manuf Eng 62:227–232

    Google Scholar 

  27. Tournier C, Duc E (2005) Iso-scallop tool path generation in 5-axis milling. Int J Adv Manuf Technol 25(9):867–875

    Article  Google Scholar 

  28. Pritschow G (1996) On the influence of the velocity gain factor on the path deviation. CIRP Ann Manuf Technol 45(1):367–371

    Article  Google Scholar 

  29. Tung ED, Tomizuka M (1993) Feedforward tracking controller design based on the identification of low frequency dynamics. ASME J Dyn syst Measur Control 115(3):348–356

    Article  MATH  Google Scholar 

  30. Younkin GW (2003) Industrial servo control systems: Fundamentals and applications. Marcel Dekker, Inc, New York

    Google Scholar 

  31. Camacho EF, Bordons Alba C (2013) Model predictive control. Springer Science & Business Media, Berlin

    Google Scholar 

  32. Maciejowski JM (2002) Predictive control with constraints. Pearson Education

  33. Beudaert X, Lavernhe S, Tournier C (2012) Feedrate interpolation with axis jerk constraints on 5-axis NURBS and g1 tool path. Int J Mach Tools Manuf 57:73–82

    Article  Google Scholar 

  34. Siemens (2005) Siemens configuration manual simodrive 611 / masterdrives MC, 1FT6 Synchronous Motors, Manual, pp 144–145

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Lavernhe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work, N 2014-812D – Projet OMEGA, is supported by DIGITEO foundation, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, TQ., Rodriguez-Ayerbe, P., Lavernhe, S. et al. Contour error pre-compensation for five-axis high speed machining: offline gain adjustment approach. Int J Adv Manuf Technol 100, 3113–3125 (2019). https://doi.org/10.1007/s00170-018-2859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2859-z

Keywords

Navigation