Skip to main content
Log in

Investigation of a novel laser shock liquid flexible microforming process applied to embossing three-dimensional large area microarrays on metallic foils

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel micro high-speed forming technique, laser shock liquid flexible embossing (LSLFE), that uses liquid shock wave induced by the laser energy to achieve elastic–plastic forming of parts, to emboss metallic foils into three-dimensional large area microarrays, and expand the range of liquid impact forming application to the field of microforming. In this study, the micro-die and liquid chamber are designed to investigate the effects of the workpiece thickness and laser energy on formability. Then, experiments are performed to demonstrate the deformation characteristics of pure copper foils with LSLFE process. The results show that the fabrication of microparts with microscale structures through LSLFE is feasible. The morphology and fitability of the formed part indicate that accurate shape and dimension replication can be achieved through this technique. Then, the influences of laser pulse energy and copper foil thickness on the deformation depth of the formed parts are investigated. The results show that the depth of the replicated features increases with laser energy rising and the workpiece thickness decreasing. Besides, surface quality investigations indicate that the roughness of the fabricated micro-die and the original workpiece, as well as the process method significantly influence surface quality of the formed parts. Nanoindentation tests show that the hardness of the formed parts along the cross-section increases in various degree after LSLFE. Finally, the thickness distributions are characterized by polishing the cross-section of the formed parts and the most significant necking of thickness occurs at the fillet location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47(9–12):821–837. https://doi.org/10.1007/s00170-009-2411-2

    Article  Google Scholar 

  2. Irthiea I, Green G, Hashim S, Kriama A (2014) Experimental and numerical investigation on micro deep drawing process of stainless steel 304 foil using flexible tools. Int J Mach Tool Manu 76(1):21–33. https://doi.org/10.1016/j.ijmachtools.2013.09.006

    Article  Google Scholar 

  3. Mai JM, Peng LF, Lai XM, Lin ZQ (2013) Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate. J Mater Process Technol 213(2):314–321. https://doi.org/10.1016/j.jmatprotec.2012.09.013

    Article  Google Scholar 

  4. Fu MW, Chan WL (2013) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67(9–12):2411–2437. https://doi.org/10.1007/s00170-012-4661-7

    Article  Google Scholar 

  5. Vaezi M, Seitz H, Yang SF (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5–8):1721–1754. https://doi.org/10.1007/s00170-012-4605-2

    Article  Google Scholar 

  6. Hirata Y (2003) LIGA process-micromachining technique using synchrotron radiation lithography-and some industrial applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 208(1):21-26 https://doi.org/10.1016/S0168-583X(03)00632-3

    Article  MathSciNet  Google Scholar 

  7. Li JW, Liu HX, Shen ZB, Qian Q, Zhang HF, Wang X (2016) Formability of micro-gears fabrication in laser dynamic flexible punching. J Mater Process Technol 234:131–142. https://doi.org/10.1016/j.jmatprotec.2016.03.018

    Article  Google Scholar 

  8. Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746. https://doi.org/10.1016/j.matdes.2011.06.039

    Article  Google Scholar 

  9. Gao H, Cheng GJ (2010) Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films. J Microelectromech Syst 19(2):273–281. https://doi.org/10.1109/JMEMS.2010.2040947

    Article  MathSciNet  Google Scholar 

  10. Rinehart JS, Pearson J (1963) Explosive working of metals. Pergamon Press, Oxford

    Google Scholar 

  11. Ionut NG (2015) Unconventional metalworking technologies. Explosive forming of metal. Impact of Socio-economic and Technological Transformations at National, European and International Level (ISETT). Institute for World Economy, Romanian Academy, vol 8

  12. Woo MA, Noh HG, An WJ, Song WJ, Kang BS, Kim J (2016) Numerical study on electrohydraulic forming process to reduce the bouncing effect in electromagnetic forming. Int J Adv Manuf Technol 89(5–8):1813–1825. https://doi.org/10.1007/s00170-016-9230-z

    Article  Google Scholar 

  13. Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213(7):1191–1212. https://doi.org/10.1016/j.jmatprotec.2013.01.026

    Article  Google Scholar 

  14. Marai M, Lang LH, Wang SH, Lin LJ, Yang CL, Luo X (2014) Investigation on the effect of liquid hammer geometry to the pressure distribution of innovative hybrid impact hydroforming. Adv Mater Res 941-944:1843–1849. https://doi.org/10.4028/www.scientific.net/AMR.941-944.1843

    Article  Google Scholar 

  15. Golowin S, Kamal M, Shang JH, Portier J, Din A, Daehn GS, Bradley JR, Newman KE, Hatkevich S (2007) Application of a uniform pressure actuator for electromagnetic processing of sheet metal. J Mater Eng Perform 16(4):455–460. https://doi.org/10.1007/s11665-007-9085-4

    Article  Google Scholar 

  16. Seth M, Vohnout VJ, Daehn GS (2005) Formability of steel sheet in high velocity impact. J Mater Process Technol 168(3):390–400. https://doi.org/10.1016/j.jmatprotec.2004.08.032

    Article  Google Scholar 

  17. Liu HX, Shen ZB, Wang X, Li P, Hu Y, Gu CX (2012) Feasibility investigations on a novel micro-embossing using laser-driven flyer. Opt Laser Technol 44(6):1987–1991. https://doi.org/10.1016/j.optlastec.2012.02.010

    Article  Google Scholar 

  18. Lang LH, Wang SH, Yang CL (2013) Research on the innovative hybrid impact hydroforming. AIP Conference Proceedings 1567(1):1107–1110. https://doi.org/10.1063/1.4850164

    Article  Google Scholar 

  19. Samardzic V, Geskin ES, Atanov GA, Semko AN, Kovaliov A (2007) Liquid impact based material micro-forming technology. J Mater Eng Perform 16(3):375–389. https://doi.org/10.1007/s11665-007-9063-x

    Article  Google Scholar 

  20. Atanov GA, Semko AN (2002) Calculation of the pulsed jet of a powder water cannon under water. Fluid Dyn Res 37(2):197–203. https://doi.org/10.1023/A:1015898030516

    Article  MATH  Google Scholar 

  21. Samardzic V, Geskin ES, Atanov GA, Semko AN, Kovaliov A (2008) Investigation of liquid impact-based macro-, meso-, and microforming processes. J Mater Eng Perform 17(3):302–315. https://doi.org/10.1007/s11665-008-9230-8

    Article  Google Scholar 

  22. Kosing OE, Skews BW (1998) High speed metal forming of circular disks and cylindrical tubes in a liquid shock tube. In: 5th International Conference on Structures Under Shock and Impact. Computational Mechanics Inc, Billerica, MA, USA, pp 661- 670. https://doi.org/10.2495/SU980581

  23. Skews BW, Kosing OE, Hattingh RJ (2004) Use of a liquid shock tube as a device for the study of material deformation under impulsive loading conditions. Proc Inst Mech Engr J Mech Eng Sci 218(1):39–51. https://doi.org/10.1243/095440604322786938

    Article  Google Scholar 

  24. Luo L, Wei DB, Wang XG, Zhou CL, Huang QX, Xu JZ, Wu D, Jiang ZY (2017) Effects of hydraulic pressure on wrinkling and earing in micro hydro deep drawing of SUS304 circular cups. Int J Adv Manuf Technol 90(1–4):189–197. https://doi.org/10.1007/s00170-016-9380-z

    Article  Google Scholar 

  25. An DY, Lang LH, Li T, Chi CL, Zhang EH (2007) Research on hydroforming failure control strategy of complex surface part made of hard shaping material. Forging Stamping Technol 32(6):82-86. https://doi.org/10.3969/j.issn.1000-3940.2007.06.021

    Article  Google Scholar 

  26. Wang SH, Lang LH, Lin LJ (2014) Investigation on the energy efficiency of innovative hybrid impact hydroforming. Adv Mater Res 989-994:1282–1285. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1282

    Article  Google Scholar 

  27. Li J, Gao H, Cheng GJ (2010) Forming limit and fracture mode of microscale laser dynamic forming. J Manuf Sci Eng 132(6):061005. https://doi.org/10.1115/1.4002546

    Article  Google Scholar 

  28. Wang X, Zhang D, Gu CX, Shen ZB, Ma YJ, Gu YX, Qiu TB, Liu HX (2015) Micro scale laser shock forming of pure copper and titanium sheet with forming/blanking compound die. Opt Lasers Eng 67:83–93. https://doi.org/10.1016/j.optlaseng.2014.09.019

    Article  Google Scholar 

  29. Wang X, Ma YJ, Shen ZB, Gu YX, Zhang D, Qiu TB, Liu HX (2015) Size effects on formability in microscale laser dynamic forming of copper foil. J Mater Process Technol 220:173–183. https://doi.org/10.1016/j.jmatprotec.2015.01.020

    Article  Google Scholar 

  30. Liu HX, Lu MM, Wang X, Shen ZB, Gu CX, Gu YX (2015) Micro-punching of aluminum foil by laser dynamic flexible punching process. Int J Mater Form 8(2):183–196. https://doi.org/10.1007/s12289-013-1159-2

    Article  Google Scholar 

  31. Liu HX, Li JW, Shen ZB, Qian Q, Zhang HF, Wang X (2015) Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process. Micromachines 6(8):969-983. https://doi.org/10.3390/mi6080969

    Article  Google Scholar 

  32. Liu HX, Sha CF, Shen ZB, Li LY, Gao S, Li C, Sun XQ, Wang X (2016) Fabrication of Dish-Shaped Micro Parts by Laser Indirect Shocking Compound Process. Micromachines 7(6):105. https://doi.org/10.3390/mi7060105

    Article  Google Scholar 

  33. Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101. https://doi.org/10.1016/S0924-0136(00)00391-5

    Article  Google Scholar 

  34. Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125(02):35–44. https://doi.org/10.1016/S0924-0136(02)00415-6

    Article  Google Scholar 

  35. Ehrhardt M, Lorenz P, Lotnyk A, Romanus H, Thelander E, Zimmer K (2014) Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing. Phys Procedia 56:944–950. https://doi.org/10.1016/j.phpro.2014.08.114

    Article  Google Scholar 

  36. Ehrhardt M, Lorenz P, Zimmer K (2014) Laser microembossing of thin copper and silver foils with an ultraviolet (UV) excimer laser. Lasers Eng 27(1):1–17 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=93983121&lang=zh-cn&site=ehost-live

    Google Scholar 

  37. Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324

    Google Scholar 

  38. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  39. Liu HX, Hu Y, Wang X, Shen ZB, Li P, Gu CX, Liu H, Du DZ, Guo C (2013) Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation. Mater Sci Eng A 564(564):13-21. https://doi.org/10.1016/j.msea.2012.11.087

    Article  Google Scholar 

  40. Meyers MA (1994) Dynamic behavior of materials. Wiley, Hoboken

    Book  Google Scholar 

  41. Wang HM, Vivek A, Wang YL, Viswanathan G, Daehn G (2017) High strain rate embossing with copper plate. Int J Mater Form 10(5):697–705. https://doi.org/10.1007/s12289-016-1312-9

    Article  Google Scholar 

  42. Yamaguchi K, Takakura N, Imatani S (1995) Increase in forming limit of sheet metals by removal of surface roughening with plastic strain (balanced biaxial stretching of aluminium sheets and foils). J Mater Process Technol 48(1–4):27–34. https://doi.org/10.1016/0924-0136(94)01629-F

    Article  Google Scholar 

  43. Cheng GJ, Pirzada D, Ming Z (2007) Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming. J Appl Phys 101(6):063108. https://doi.org/10.1063/1.2710334

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant no. 51675243) and the college students’ practical innovation fund of Industry Centre of Jiangsu University (grant no. ZXJG201772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, F., Ma, Y. et al. Investigation of a novel laser shock liquid flexible microforming process applied to embossing three-dimensional large area microarrays on metallic foils. Int J Adv Manuf Technol 99, 419–435 (2018). https://doi.org/10.1007/s00170-018-2453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2453-4

Keywords

Navigation