Skip to main content
Log in

Thermal error control method based on thermal deformation balance principle for the precision parts of machine tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new thermal error control method based on the thermal deformation balance principle is suggested to control the thermal error of a precision machine tool’s functional parts, which negatively affects processing precision. The compensation of the thermal expansion of metal by the thermal contraction of carbon fiber reinforced plastics (CFRPs), which has a negative linear expansion coefficient, lies behind this method. The metal structure is bonded with CFRP bandage and thermoelectric modules to achieve the temperature difference between the metal and the CFRP, thereby realizing the same thermal deformation. The heat transfer channel in the compensation system for thermal deformation is designed by the structural topology design method to distribute the heat evenly. Experimental and numerical simulation results show that the suggested approach reduces thermal displacement by 93% compared with the metal structure without the CFRP bandage. The suggested method can be applied to thermal deformation compensation for various high-precision equipment, including coordinate measuring machines, aerospace equipment, and optics and optical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu H, Miao EM, Wei XY, Zhuang XD (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113:35–48. https://doi.org/10.1016/j.ijmachtools.2016.11.001

    Article  Google Scholar 

  2. Ramesh R, Mannan M, Poo a (2000) Error compensation in machine tools—a review. Int J Mach Tools Manuf 40:1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  3. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61:771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  4. Guo Q, Yang J, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50:667–675. https://doi.org/10.1007/s00170-010-2520-y

    Article  Google Scholar 

  5. Lu Y, Islam MN (2012) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62:1071–1085. https://doi.org/10.1007/s00170-011-3849-6

    Article  Google Scholar 

  6. Zhang Y, Yang J, Xiang S, Xiao H (2013) Volumetric error modeling and compensation considering thermal effect on five-axis machine tools. Proc Inst Mech Eng Part C J Mech Eng Sci 227:1102–1115. https://doi.org/10.1177/0954406212456475

    Article  Google Scholar 

  7. Yang Z, Sun M, Li W, Liang W (2011) Modified Elman network for thermal deformation compensation modeling in machine tools. Int J Adv Manuf Technol 54:669–676. https://doi.org/10.1007/s00170-010-2961-3

    Article  Google Scholar 

  8. Wang KC (2006) Thermal error modeling of a machining center using grey system theory and HGA-trained neural network. In: 2006 I.E. Conference on Cybernetics and Intelligent Systems

  9. Mayr J (2009) Beurteilung und Kompensation des Temperaturganges von Werkzeugmaschinen. Diss ETH Nr 18677

  10. Mayr J, Weikert S, Wegener K (2007) Comparing the thermo-mechanical-behavior of machine tool frame designs using a FDM-FEA simulation approach. Proc 22nd ASPE Annu Meet 17–20

  11. Mayr J, Ess M, Weikert S, Wegener K (2008) Simulation and prediction of the thermally induced deformations of machine tools caused by moving linear axis using the FDEM simulation approach. In Proceedings ASPE Annual Meeting

  12. Mayr J, Ess M, Weikert S, Wegener K (2012) Calculating thermal location and component errors on machine tools. red 2000(1):3

  13. Mayr J, Ess M, Weikert S, Wegener K (2009) Compensation of thermal effects on machine tools using a FDEM simulation approach. Proceedings Lamdamap, 9

  14. Lakes R (2007) Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl Phys Lett 90:221905. https://doi.org/10.1063/1.2743951

    Article  Google Scholar 

  15. Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69:3203–3205. https://doi.org/10.1063/1.117961

    Article  Google Scholar 

  16. Gibiansky LV, Torquato S (1997) Thermal expansion of isotropic multiphase composites and polycrystals. J Mech Phys Solids 45:1223–1252. https://doi.org/10.1016/S0022-5096(96)00129-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Jefferson G, Parthasarathy TA, Kerans RJ (2009) Tailorable thermal expansion hybrid structures. Int J Solids Struct 46:2372–2387. https://doi.org/10.1016/j.ijsolstr.2009.01.023

    Article  MATH  Google Scholar 

  18. Steeves CA, dos Santos e Lucato SL, He M, Antinucci E, Hutchinson JW, Evans AG (2007) Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J Mech Phys Solids 55:1803–1822. https://doi.org/10.1016/j.jmps.2007.02.009

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei K, Chen H, Pei Y, Fang D (2016) Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J Mech Phys Solids 86:173–191. https://doi.org/10.1016/j.jmps.2015.10.004

    Article  MathSciNet  Google Scholar 

  20. Berger J, Mercer C, McMeeking RM, Evans AG (2011) The design of bonded bimaterial lattices that combine low thermal expansion with high stiffness. J Am Ceram Soc 94:s42–s54. https://doi.org/10.1111/j.1551-2916.2011.04503.x

    Article  Google Scholar 

  21. Uhlmann E, Marcks P (2007) Adaptronic compensation of thermal strain at machine tool spindles using CRP-bandages. In: Proceedings of 2nd Manufacturing Engineering Society International Conference, pp 183–186

  22. Uhlmann E, Marcks P, Mense C (2007) Milling machine evolution in area of conflict between efficiency. Accuracy and Social Ecology. In: 12th International Seminar on High Techn. UNIMEP

  23. Uhlmann E, Marcks P (2008) Compensation of thermal deformations at machine tools using adaptronic CRP-structures. In: Manufacturing systems and Technologies for the new Frontier. Springer, London, pp 183–186

    Chapter  Google Scholar 

  24. Uhlmann E (2010) Application of CFRP structures for compensation of thermal strains at machine tools. CIRP Paris January Meet STC M Pap Sess

  25. Uhlmann E, Marcks P (2010) Kompensation thermischer Verlagerungen an Werkzeugmaschinen durch Einsatz von CFK-Strukturen, Fortschr.-Ber. VDI, Reihe 2 – Fertigungstechnik, Nr. 675: Hybride Techn. in der Prod., VDI-Verlag, 65–77

  26. Huang BJ, Chin CJ, Duang CL (2000) Design method of thermoelectric cooler. Int J Refrig 23:208–218. https://doi.org/10.1016/S0140-7007(99)00046-8

    Article  Google Scholar 

  27. Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2:380–404. https://doi.org/10.1177/002199836800200308

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by Research Project of Shanghai Municipal Science and Technology Commission (Grant No. 1511050230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Ding, X. Thermal error control method based on thermal deformation balance principle for the precision parts of machine tools. Int J Adv Manuf Technol 97, 1253–1268 (2018). https://doi.org/10.1007/s00170-018-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1992-z

Keywords

Navigation