Skip to main content
Log in

A numerical-analytical approach to predict white and dark layer thickness of hard machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Modeling of phase transformations induced by hard machining is a major interest for researchers due to their critical impact on surface integrity. These transformations are commonly referred to as white layers (WLs) and/or dark layers (DLs). This paper presents a new approach to predict the formation of WLs and DLs in orthogonal cutting of AISI 52100 hardened steel. A numerical–analytical method is developed based on three principal steps: (i) development of a 2D finite element model (FEM) of a hard turning operation, (ii) prediction of the temperature, the equivalent stress, and the strain energy in the machined surface, and (iii) analytical calculation of the transformation temperature and prediction of the WL and DL thickness. The predicted results of cutting forces, chip morphologies, WL thickness, and DL thickness are physically consistent with previous experimental works. The developed model is further used in order to investigate the effect of cutting speed, feed rate, and tool flank wear on the depth of the generated layers. This proposed approach can be used to optimize cutting process parameters to minimize layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao C, Zhang X (2016) Effect of different machining processes on the tool surface integrity and fatigue life. J Mech Sci Technol 30:3785–3792. https://doi.org/10.1007/s12206-016-0740-2

    Article  Google Scholar 

  2. Smith S, Melkote SN, Lara-Curzio E, Watkins TR, Allard L, Riester L (2007) Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance. Mater Sci Eng A 459:337–346. https://doi.org/10.1016/j.msea.2007.01.011

    Article  Google Scholar 

  3. Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng A 390:88–97. https://doi.org/10.1016/j.msea.2004.08.052

    Article  Google Scholar 

  4. Li JG, Umemoto M, Todaka Y, Tsuchiya K (2007) A microstructural investigation of the surface of a drilled hole in carbon steels. Acta Mater 55:1397–1406. https://doi.org/10.1016/j.actamat.2006.09.043

    Article  Google Scholar 

  5. Warren AW, Guo YB (2006) Machined surface properties determined by nanoindentation: experimental and FEA studies on the effects of surface integrity and tip geometry. Surf Coatings Technol 201:423–433. https://doi.org/10.1016/j.surfcoat.2005.11.139

    Article  Google Scholar 

  6. Ben Salem S, Bayraktar E (2012) Effect of cutting parameters on chip formation in orthogonal cutting. J Achiev Mater Manuf Eng 50:7–17. https://doi.org/10.1063/1.3552327

    Google Scholar 

  7. Zhang X-M, Chen L, Ding H (2016) Effects of process parameters on white layer formation and morphology in hard turning of AISI52100 steel. J Manuf Sci Eng 138:74502. https://doi.org/10.1115/1.4032769

    Article  Google Scholar 

  8. Gaitonde VN, Karnik SR, Figueira L, Davim JP (2009) Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater Manuf Process 24:1373–1382. https://doi.org/10.1080/10426910902997415

    Article  Google Scholar 

  9. Ambrogio G, Di Renzo S, Gagliardi F, Umbrello D (2012) White and dark layer analysis using response surface methodology. Key Eng Mater 504–506:1335–1340. https://doi.org/10.4028/www.scientific.net/KEM.504-506.1335

    Article  Google Scholar 

  10. Griffiths BJ (1987) Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol 109:525. https://doi.org/10.1115/1.3261495

    Article  Google Scholar 

  11. Hosseini SB, Ryttberg K, Kaminski J, Klement U (2012) Characterization of the surface integrity induced by hard turning of bainitic and martensitic AISI 52100 steel. Procedia CIRP 1:494–499. https://doi.org/10.1016/j.procir.2012.04.088

    Article  Google Scholar 

  12. J.D. Thiele, S.N. Melkote, R.A. Peascoe, T.R. Watkins, Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100, 122 (2000) 642–649

  13. Chou YK, Evans CJ (1999) White layers and thermal modeling of hard turned surfaces. Int J Mach Tools Manuf 39:1863–1881. https://doi.org/10.1016/S0890-6955(99)00036-X

    Article  Google Scholar 

  14. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proc R Soc NSW 76:203–224

    Google Scholar 

  15. Ramesh A, Melkote SN (2008) Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int J Mach Tools Manuf 48:402–414. https://doi.org/10.1016/j.ijmachtools.2007.09.007

    Article  Google Scholar 

  16. Duan C, Kong W, Hao Q, Zhou F (2013) Modeling of white layer thickness in high speed machining of hardened steel based on phase transformation mechanism. Int J Adv Manuf Technol 69:59–70. https://doi.org/10.1007/s00170-013-5005-y

    Article  Google Scholar 

  17. Ding H, Shin YC (2013) Multi-physics modeling and simulations of surface microstructure alteration in hard turning. J Mater Process Technol 213:877–886. https://doi.org/10.1016/j.jmatprotec.2012.12.016

    Article  Google Scholar 

  18. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60. https://doi.org/10.1016/0001-6160(59)90170-1

    Article  Google Scholar 

  19. Schulze V, Michna J, Zanger F, Pabst R (2011) Modeling the process-induced modifications of the microstructure of work piece surface zones in cutting processes. Adv Mater Res 223:371–380. https://doi.org/10.4028/www.scientific.net/AMR.223.371

    Article  Google Scholar 

  20. Narine SS, Humphrey KL, Bouzidi L (2006) Modification of the Avrami model for application to the kinetics of the melt crystallization of lipids. J Am Oil Chem Soc 83:913–921. https://doi.org/10.1007/s11746-006-5046-6

    Article  Google Scholar 

  21. Umbrello D, Filice L (2009) Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. CIRP Ann - Manuf Technol 58:73–76. https://doi.org/10.1016/j.cirp.2009.03.106

    Article  Google Scholar 

  22. Umbrello D, Jayal AD, Caruso S, Dillon OW, Jawahir IS (2010) Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel. Mach Sci Technol 14:128–147. https://doi.org/10.1080/10910340903586525

    Article  Google Scholar 

  23. Umbrello D, Outeiro JC, M’Saoubi R, Jayal AD, Jawahir IS (2010) A numerical model incorporating the microstructure alteration for predicting residual stresses in hard machining of AISI 52100 steel. CIRP Ann - Manuf Technol 59:113–116. https://doi.org/10.1016/j.cirp.2010.03.061

    Article  Google Scholar 

  24. Shi J, Liu CR (2006) On predicting chip morphology and phase transformation in hard machining. Int J Adv Manuf Technol 27:645–654. https://doi.org/10.1007/s00170-004-2242-0

    Article  Google Scholar 

  25. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  26. Zhang X, Wu S, Wang H, Liu CR (2011) Predicting the effects of cutting parameters and tool geometry on hard turning process using finite element method. J Manuf Sci Eng 133:41010. https://doi.org/10.1115/1.4004611

    Article  Google Scholar 

  27. Arrazola PJ, Özel T (2008) Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Mech Eng 3:238–249. https://doi.org/10.1504/IJMMM.2008.020907

    Google Scholar 

  28. Dehmani H, Salvatore F, Hamdi H (2013) Numerical study of residual stress induced by multi-steps orthogonal cutting. Procedia CIRP. 8:299–304. https://doi.org/10.1016/j.procir.2013.06.106

    Article  Google Scholar 

  29. Guo YB, Liu CR (2002) Mechanical properties of hardened AISI 52100 steel in hard machining processes. J Manuf Sci Eng 124:1. https://doi.org/10.1115/1.1413775

    Article  Google Scholar 

  30. S.K.S. Din, F.N. Ricottura, T. Rinvenimento, Comparable standards, (n.d.) 91–92

  31. I. a Al-zkeri, T. Altan, G. Kinzel, A. Gilat, A. Yi, Finite element modeling of hard turning, Dr. THESIS. (2007)

  32. Umbrello D (2011) Influence of material microstructure changes on surface integrity in hard machining of AISI 52100 steel. Int J Adv Manuf Technol 54:887–898. https://doi.org/10.1007/s00170-010-3003-x

    Article  Google Scholar 

  33. Manco GL, Caruso S, Rotella G (2010) FE modeling of microstructural changes in hard turning of AISI 52100 steel. Int J Mater Form 3:447–450. https://doi.org/10.1007/s12289-010-0803-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arfaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, S., Zemzemi, F. & Tourki, Z. A numerical-analytical approach to predict white and dark layer thickness of hard machining. Int J Adv Manuf Technol 96, 3355–3364 (2018). https://doi.org/10.1007/s00170-018-1831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1831-2

Keywords

Navigation