Skip to main content
Log in

Determination of optimal measurement configurations for self-calibrating a robotic visual inspection system with multiple point constraints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we propose an algorithm to determine optimal measurement configurations for self-calibrating a robotic visual inspection system with multiple point constraints. The algorithm aims to improve the robotic visual inspection system’s calibration accuracy. To do so, a pre-calibration of the robotic visual inspection system is needed to obtain the hand-eye and robot exterior relationship to implement the inverse kinematic algorithm. The candidate measurement configurations with one point constraint can be obtained using the inverse kinematic algorithm for the robotic visual inspection system, so DETMAX is implemented to determine a given number of optimal measurement configurations from the candidate measurement configurations. Particle swarm optimization is used to optimize the positions of the multiple points one by one. To verify the efficiency of the proposed approach, experiment evaluation is conducted on a robotic visual inspection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Driels MR, Swayze LW, Potter LS (1993) Full-pose calibration of a robot manipulator using a coordinate-measuring machine. Int J Adv Manuf Technol 8(1):34–41

    Article  Google Scholar 

  2. To M, Webb P (2012) An improved kinematic model for calibration of serial robots having closed-chain mechanisms. Robotica 30:963–971. https://doi.org/10.1017/S0263574711001184

    Article  Google Scholar 

  3. Wang HX, Shen SH, Lu X (2012) A screw axis identification method for serial robot calibration based on the POE model. Ind Robot Int J 39(2):146–153. https://doi.org/10.1108/01439911211201609

    Article  Google Scholar 

  4. Santolaria J, Conte J, Gines M (2013) Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector. Int J Adv Manuf Technol 66(9–12):2087–2106. https://doi.org/10.1007/s00170-012-4484-6

    Article  Google Scholar 

  5. Wang Z, Maropoulos PG (2016) Real-time laser tracker compensation of a 3-axis positioning system-dynamic accuracy characterization. Int J Adv Manuf Technol 84(5–8):1413–1420. https://doi.org/10.1007/s00170-015-7820-9

    Google Scholar 

  6. Zeng YF, Tian W, Li DW, He XX, Liao WH (2017) An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system. Int J Adv Manuf Technol 88(9–12):2745–2755. https://doi.org/10.1007/s00170-016-8975-8

    Article  Google Scholar 

  7. Gong CH, Yuan JX, Ni J (2000) A self-calibration method for robotic measurement system. J Manuf Sci Eng Trans ASME 122(1):174–181. https://doi.org/10.1115/1.538916

    Article  Google Scholar 

  8. Khalil W, Besnard S, Lemoine P (2000) Comparison study of the geometric parameters calibration methods. Int J Robot Autom 15(2)

  9. Meng Y, Zhuang HQ (2007) Autonomous robot calibration using vision technology. Robot Comput Integr Manuf 23(4):436–446. https://doi.org/10.1016/j.rcim.2006.05.002

    Article  Google Scholar 

  10. Du GL, Zhang P (2013) Online robot calibration based on vision measurement. Robot Comput Integr Manuf 29(6):484–492. https://doi.org/10.1016/j.rcim.2013.05.003

    Article  Google Scholar 

  11. Yin SB, Guo Y, Ren YJ, Zhu JG, Yang SR, Ye SH (2014) Real-time thermal error compensation method for robotic visual inspection system. Int J Adv Manuf Technol 75(5–8):933–946. https://doi.org/10.1007/s00170-014-6196-6

    Article  Google Scholar 

  12. Chen X, Xi J (2018) Simultaneous and on-line calibration of a robot-based inspecting system. Comput Integr Manuf 49:349–360. https://doi.org/10.1016/j.rcim.2017.08.006

  13. Borm J-H, Meng C-H (1991) Determination of optimal measurement configurations for robot calibration based on observability measure. Int J Robot Res 10(1):51–63

    Article  Google Scholar 

  14. Joubair A, Bonev IA (2013) Comparison of the efficiency of five observability indices for robot calibration. Mech Mach Theory 70:254–265

    Article  Google Scholar 

  15. Joubair A, Tahan AS, Bonev IA, Ieee (2016) Performances of observability indices for industrial robot calibration. 2016 IEEE/RSJ Int Conf Intell Robot Syst, pp 2477–2484

  16. Menq C-H, Borm J-H, Lai JZ (1989) Identification and observability measure of a basis set of error parameters in robot calibration. J Mech Transm Autom Des 111(4):513–518. https://doi.org/10.1115/1.3259031

    Article  Google Scholar 

  17. Driels MR, Pathre US (1990) Significance of observation strategy on the design of robot calibration experiments. J Robot Syst 7(2):197–223

    Article  Google Scholar 

  18. Nahvi A, Hollerbach JM, Hayward V (1994) Calibration of a parallel robot using multiple kinematic closed loops. In: Proceedings of the 1994 I.E. International Conference on Robotics and Automation 401:407–412

  19. Nahvi A, Hollerbach JM (1996) The noise amplification index for optimal pose selection in robot calibration. In: Proceedings of the 1996 I.E. International Conference on Robotics and Automation 641:647–654

  20. Sun Y, Hollerbach JM (2008) Observability index selection for robot calibration. In: IEEE International Conference on Robotics and Automation 831–836

  21. Horne A, Notash L (2009) Comparison of pose selection criteria for kinematic calibration through simulation. Springer, Berlin

    Book  Google Scholar 

  22. Zhou J, Kang HJ, Ro YS (2010) Comparison of the observability indices for robot calibration considering joint stiffness parameters. Commun Comput Inf Sci 93:372–380

    MATH  Google Scholar 

  23. Daney D (2002) Optimal measurement configurations for Gough platform calibration. In: Robotics and automation. Proceedings. ICRA'02. IEEE International Conference on, 2002. IEEE 1:147–152

  24. Sun Y, Hollerbach JM (2008) Active robot calibration algorithm. In: IEEE International Conference on Robotics and Automation. pp 1276–1281

  25. Zhuang H, Wu J, Huang W (1996) Optimal planning of robot calibration experiments by genetic algorithms. In: Proceedings of the 1996 I.E. International Conference on Robotics and Automation 982:981–986

  26. Daney D, Papegay Y, Madeline B (2005) Choosing measurement poses for robot calibration with the local convergence method and tabu search. Int J Robot Res 24(6):501–518. https://doi.org/10.1177/02783649053185

    Article  Google Scholar 

  27. Huang C, Xie C, Zhang T (2008) Determination of optimal measurement configurations for robot calibration based on a hybrid optimal method. In: International Conference on Information and Automation, pp 789–793

  28. Perez R, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85(19):1579–1588

    Article  Google Scholar 

  29. Sun WJ, Hill M, McBride JW (2008) An investigation of the robustness of the nonlinear least-squares sphere fitting method to small segment angle surfaces. Precis Eng J Int Soc Prec Eng Nanotechnol 32(1):55–62. https://doi.org/10.1016/j.precisioneng.2007.04.008

    Google Scholar 

  30. Yu C, Chen X, Xi J (2017) Modeling and calibration of a novel one-mirror galvanometric laser scanner. Sensors 17(1):164

    Article  Google Scholar 

  31. Denavit J (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans of the ASME J Appl Mech 22:215–221

  32. Hayati SA (1983) Robot arm geometric link parameter estimation. In: Decision and control. The 22nd IEEE Conference on, 1983. IEEE 22:1477–1483

  33. Everett LJ, Suryohadiprojo AH (1988) A study of kinematic models for forward calibration of manipulators. In: Proceedings of the 1988 I.E. International Conference on Robotics and Automation 792:798–800

  34. Joubair A, Bonev IA (2014) Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int J Adv Manuf Technol 77(1–4):515–523

    Google Scholar 

  35. Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, vol.630, pp 105–116

  36. Chen Q, Zhu S, Zhang X (2015) Improved inverse kinematics algorithm using screw theory for a six-DOF robot manipulator. Int J Adv Robot Syst 12(10):140. https://doi.org/10.5772/60834

    Article  Google Scholar 

  37. Yin SB, Ren YJ, Zhu JG, Yang SR, Ye SH (2013) A vision-based self-calibration method for robotic visual inspection systems. Sensors 13(12):16565–16582

    Article  Google Scholar 

  38. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural networks. Proceedings., IEEE International Conference on, 1995. IEEE 4:1942–1948

Download references

Funding

This work is supported by the National Natural Science Foundation of China (51575354), the National Key Technology Research and Development of the Ministry of Science and Technology of China (2012BAF12B01, 973 Program 2014CB046604), and the Shanghai Municipal Science and Technology project (16111106102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntong Xi.

Electronic supplementary material

Supplementary Video 1

(MP4 8688 kb)

Supplementary Video 2

(MP4 6312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Chen, X. & Xi, J. Determination of optimal measurement configurations for self-calibrating a robotic visual inspection system with multiple point constraints. Int J Adv Manuf Technol 96, 3365–3375 (2018). https://doi.org/10.1007/s00170-018-1739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1739-x

Keywords

Navigation