Skip to main content
Log in

Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper discusses a multi-scale approach for the simulation of preform impregnation and a dielectric flow monitoring system in liquid composite molding processes. A mesoscale unit cell was built based on image analysis of the microstructure of manufactured composite laminates. Bulk permeability and saturation rate were computed at the mesoscale and then introduced in the macroscale model modifying the governing mass and momentum equations. The model was used to simulate a unidirectional infusion test, in order to compare numerical results with experimental data from pressure measurements. Moreover, a non-invasive dielectric monitoring system for unsaturated and saturated flow tracking was developed. The good agreement exhibited by the numerical and experimental results points out the capability of the multiscale model as well as of the dielectric monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harshe R (2015) A review on advanced out-of-autoclave composites processing. J Indian Inst Sci 95:207–220

    Google Scholar 

  2. Liu L, Qi C, Wu F, Yu F, Zhu X (2017) The effect of support on multi-hole drilling for glass fiber-reinforced plastic composite materials. Int J Adv Manuf Technol 93:953–965. https://doi.org/10.1007/s00170-017-0534-4

    Article  Google Scholar 

  3. He Y, Qing H, Zhang S, Wang D, Zhu S (2017) The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite. Int J Adv Manuf Technol 93:1–14. https://doi.org/10.1007/s00170-017-0613-6

    Article  Google Scholar 

  4. Wang G-D, Melly SK (2017) Three-dimensional finite element modeling of drilling CFRP composites using Abaqus/CAE: a review. Int J Adv Manuf Technol 94:599–614. https://doi.org/10.1007/s00170-017-0754-7

    Article  Google Scholar 

  5. Campbell FC (2006) Polymer matrix composites. In: Manufacturing Technology for Aerospace Structural Materials. Elsevier, pp 273–368. https://doi.org/10.1016/B978-185617495-4/50007-X

  6. Centea T, Grunenfelder LK, Nutt SR (2015) A review of out-of-autoclave prepregs—material properties, process phenomena, and manufacturing considerations. Compos A Appl Sci Manuf 70:132–154. https://doi.org/10.1016/j.compositesa.2014.09.029

    Article  Google Scholar 

  7. Michaud V (2016) A review of non-saturated resin flow in liquid composite moulding processes. Transp Porous Media 115:581–601. https://doi.org/10.1007/s11242-016-0629-7

    Article  MathSciNet  Google Scholar 

  8. Hassan MH, Othman AR (2017) Contribution of processing parameters on void content in the vacuum bagging configurations of L-shaped composite laminates. Int J Adv Manuf Technol 93:1–13. https://doi.org/10.1007/s00170-017-0585-6

    Article  Google Scholar 

  9. Aleksendrić D, Carlone P (2015) Introduction to composite materials. In: Soft Computing in the Design and Manufacturing of Composite Materials. Elsevier, pp 1–5. https://doi.org/10.1533/9781782421801.1

  10. Binétruy C, Hilaire B, Pabiot J (1997) The interactions between flows occurring inside and outside fabric tows during RTM. Compos Sci Technol 57:587–596. https://doi.org/10.1016/S0266-3538(97)00019-5

    Article  Google Scholar 

  11. Binetruy C, Hilaire B, Pabiot J (1998) Tow impregnation model and void formation mechanisms during RTM. J Compos Mater 32:223–245. https://doi.org/10.1177/002199839803200302

    Article  Google Scholar 

  12. Pillai KM, Advani SG (1998) A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J Compos Mater 32:1753–1783. https://doi.org/10.1177/002199839803201902

    Article  Google Scholar 

  13. Parnas RS, Phelan FR (1991) The effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPLE Q 22:53–60

  14. DeParseval Y, Pillai KM, Advani SG (1997) A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp Porous Media 27:243–264. https://doi.org/10.1023/A:1006544107324

    Article  Google Scholar 

  15. Kuentzer N, Simacek P, Advani SG, Walsh S (2006) Permeability characterization of dual scale fibrous porous media. Compos A Appl Sci Manuf 37:2057–2068. https://doi.org/10.1016/j.compositesa.2005.12.005

    Article  Google Scholar 

  16. Sharma S, Siginer DA (2010) Permeability measurement methods in porous media of fiber reinforced composites. Appl Mech Rev 63:20802. https://doi.org/10.1115/1.4001047

    Article  Google Scholar 

  17. Arbter R, Beraud JM, Binetruy C, Bizet L, Bréard J, Comas-Cardona S, Demaria C, Endruweit A, Ermanni P, Gommer F, Hasanovic S, Henrat P, Klunker F, Laine B, Lavanchy S, Lomov SV, Long A, Michaud V, Morren G, Ruiz E, Sol H, Trochu F, Verleye B, Wietgrefe M, Wu W, Ziegmann G (2011) Experimental determination of the permeability of textiles: a benchmark exercise. Compos A Appl Sci Manuf 42:1157–1168. https://doi.org/10.1016/j.compositesa.2011.04.021

    Article  Google Scholar 

  18. Naik NK, Sirisha M, Inani A (2014) Permeability characterization of polymer matrix composites by RTM/VARTM. Prog Aerosp Sci 65:22–40. https://doi.org/10.1016/j.paerosci.2013.09.002

    Article  Google Scholar 

  19. Vernet N, Ruiz E, Advani S, Alms JB, Aubert M, Barburski M, Barari B, Beraud JM, Berg DC, Correia N, Danzi M, Delavière T, Dickert M, di Fratta C, Endruweit A, Ermanni P, Francucci G, Garcia JA, George A, Hahn C, Klunker F, Lomov SV, Long A, Louis B, Maldonado J, Meier R, Michaud V, Perrin H, Pillai K, Rodriguez E, Trochu F, Verheyden S, Wietgrefe M, Xiong W, Zaremba S, Ziegmann G (2014) Experimental determination of the permeability of engineering textiles: benchmark II. Compos A Appl Sci Manuf 61:172–184. https://doi.org/10.1016/j.compositesa.2014.02.010

    Article  Google Scholar 

  20. Di Fratta C, Klunker F, Trochu F, Ermanni P (2015) Characterization of textile permeability as a function of fiber volume content with a single unidirectional injection experiment. Compos A Appl Sci Manuf 77:238–247. https://doi.org/10.1016/j.compositesa.2015.05.021

    Article  Google Scholar 

  21. Tan H, Pillai KM (2012) Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding III: reactive flows. Compos A Appl Sci Manuf 43:29–44. https://doi.org/10.1016/j.compositesa.2011.08.008

    Article  Google Scholar 

  22. Loix F, Badel P, Orgéas L, Geindreau C, Boisse P (2008) Woven fabric permeability: from textile deformation to fluid flow mesoscale simulations. Compos Sci Technol 68:1624–1630. https://doi.org/10.1016/j.compscitech.2008.02.027

    Article  Google Scholar 

  23. Modi D, Correia N, Johnson M, Long A, Rudd C, Robitaille F (2007) Active control of the vacuum infusion process. Compos A Appl Sci Manuf 38:1271–1287. https://doi.org/10.1016/j.compositesa.2006.11.012

    Article  Google Scholar 

  24. Mesogitis TS, Skordos AA, Long AC (2014) Uncertainty in the manufacturing of fibrous thermosetting composites: a review. Compos A Appl Sci Manuf 57:67–75. https://doi.org/10.1016/j.compositesa.2013.11.004

    Article  Google Scholar 

  25. Park CH, Woo L (2011) Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J Reinf Plast Compos 30:957–977. https://doi.org/10.1177/0731684411411338

    Article  Google Scholar 

  26. Varna J, Joffe R, Berglund LA, Lundström TS (1995) Effect of voids on failure mechanisms in RTM laminates. Compos Sci Technol 53:241–249. https://doi.org/10.1016/0266-3538(95)00024-0

    Article  Google Scholar 

  27. Grossing H, Stadlmajer N, Fauster E et al (2016) Flow front advancement during composite processing: predictions from numerical filling simulation tools in comparison with real-world experiments. Polym Compos 37:2782–2793. https://doi.org/10.1002/pc.23474

    Article  Google Scholar 

  28. Nielsen DR, Pitchumani R (2002) Control of flow in resin transfer molding with real-time preform permeability estimation. Polym Compos 23:1087–1110. https://doi.org/10.1002/pc.10504

    Article  Google Scholar 

  29. Matsuzaki R, Shiota M (2017) Data assimilation for three-dimensional flow monitoring in non-flat composite structures during vacuum-assisted resin transfer molding: a numerical study. Compos Struct 172:155–165. https://doi.org/10.1016/j.compstruct.2017.03.089

    Article  Google Scholar 

  30. Di Fratta C, Koutsoukis G, Klunker F, Ermanni P (2016) Fast method to monitor the flow front and control injection parameters in resin transfer molding using pressure sensors. J Compos Mater 50:2941–2957. https://doi.org/10.1177/0021998315614994

    Article  Google Scholar 

  31. Di Fratta C, Klunker F, Ermanni P (2013) A methodology for flow-front estimation in LCM processes based on pressure sensors. Compos A Appl Sci Manuf 47:1–11. https://doi.org/10.1016/j.compositesa.2012.11.008

    Article  Google Scholar 

  32. Tuncol G, Danisman M, Kaynar A, Sozer EM (2007) Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors. Compos A Appl Sci Manuf 38:1363–1386. https://doi.org/10.1016/j.compositesa.2006.10.009

    Article  Google Scholar 

  33. Wang P, Molimard J, Drapier S, Vautrin A, Minni JC (2012) Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors. J Compos Mater 46:691–706. https://doi.org/10.1177/0021998311410479

    Article  Google Scholar 

  34. Konstantopoulos S, Fauster E, Schledjewski R (2014) Monitoring the production of FRP composites: a review of in-line sensing methods. Express Polym Lett 8:823–840. https://doi.org/10.3144/expresspolymlett.2014.84

    Article  Google Scholar 

  35. Schmachtenberg E, Schulte Zur Heide J, Töpker J (2005) Application of ultrasonics for the process control of resin transfer moulding (RTM). Polym Test 24:330–338. https://doi.org/10.1016/j.polymertesting.2004.11.002

    Article  Google Scholar 

  36. Fink BK, Gillespie JW, Walsh S et al (1995) Advances in resin transfer molding flow monitoring using SMARTweave sensors. In: Proceedings of ASME, International Mechanical Engineering Congress and Exposition. San Francisco, CA, pp 999–1015

  37. Bradley JE, Diaz-Perez J, Gillespie JW Jr, Fink BK (1998) On-line process monitoring and analysis of large thick-section composite parts utilizing SMARTweave in-situ sensing technology. Int SAMPE Symp Exhib 43

  38. Yenilmez B, Murat Sozer E (2009) A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding. Compos A Appl Sci Manuf 40:476–489. https://doi.org/10.1016/j.compositesa.2009.01.014

    Article  Google Scholar 

  39. Hegg MC, Ogale A, Mescher A, Mamishev AV, Minaie B (2005) Remote monitoring of resin transfer molding processes by distributed dielectric sensors. J Compos Mater 39:1519–1539. https://doi.org/10.1177/0021998305051083

    Article  Google Scholar 

  40. Sozer EM, Simacek P, Advani SG (2012) Resin transfer molding (RTM) in polymer matrix composites. In: Manufacturing Techniques for Polymer Matrix Composites (PMCs). Elsevier, pp 245–309. https://doi.org/10.1533/9780857096258.3.243

  41. Slade J, Pillai KM, Advani SG (2001) Investigation of unsaturated flow in woven, braided and stitched fiber mats during mold-filling in resin transfer molding. Polym Compos 22:491–505. https://doi.org/10.1002/pc.10554

    Article  Google Scholar 

  42. Ken Han K, Lee CW, Rice BP (2000) Measurements of the permeability of fiber preforms and applications. Compos Sci Technol 60:2435–2441

    Article  Google Scholar 

  43. Michaud V, Mortensen A (2001) Infiltration processing of fibre reinforced composites: governing phenomena. Compos A Appl Sci Manuf 32:981–996. https://doi.org/10.1016/S1359-835X(01)00015-X

    Article  Google Scholar 

  44. Gascón L, García JA, Lebel F et al (2015) Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding. Compos A Appl Sci Manuf 77:275–284. https://doi.org/10.1016/j.compositesa.2015.05.019

    Article  Google Scholar 

  45. Markicevic B, Djilali N (2006) Two-scale modeling in porous media: relative permeability predictions. Phys Fluids 18:033101. https://doi.org/10.1063/1.2174877

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou F, Kuentzer N, Simacek P, Advani SG, Walsh S (2006) Analytic characterization of the permeability of dual-scale fibrous porous media. Compos Sci Technol 66:2795–2803. https://doi.org/10.1016/j.compscitech.2006.02.025

    Article  Google Scholar 

  47. Zhou F, Alms J, Advani SG (2008) A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions. Compos Sci Technol 68:699–708. https://doi.org/10.1016/j.compscitech.2007.09.010

    Article  Google Scholar 

  48. Pillai KM, Advani SG (1998) Numerical simulation of unsaturated flow in woven fiber preforms during the resin transfer molding process. Polym Compos 19:71–80. https://doi.org/10.1002/pc.10077

    Article  Google Scholar 

  49. Park CH, Lebel A, Saouab A, Bréard J, Lee WI (2011) Modeling and simulation of voids and saturation in liquid composite molding processes. Compos A Appl Sci Manuf 42:658–668. https://doi.org/10.1016/j.compositesa.2011.02.005

    Article  Google Scholar 

  50. Labat L, Bréard J, Pillut-Lesavre S, Bouquet G (2001) Void fraction prevision in LCM parts. Eur Phys J Appl Phys 16:157–164. https://doi.org/10.1051/epjap:2001104

    Article  Google Scholar 

  51. Pillai KM (2002) Governing equations for unsaturated flow through woven fiber mats. Part 1. Isothermal flows. Compos A Appl Sci Manuf 33:1007–1019. https://doi.org/10.1016/S1359-835X(02)00034-9

    Article  Google Scholar 

  52. Pillai KM, Munagavalasa MS (2004) Governing equations for unsaturated flow through woven fiber mats. Part 2. Non-isothermal reactive flows. Compos A Appl Sci Manuf 35:403–415. https://doi.org/10.1016/j.compositesa.2004.01.001

    Article  Google Scholar 

  53. Koohbor B, Ravindran S, Kidane A (2017) Experimental determination of representative volume element (RVE) size in woven composites. Opt Lasers Eng 90:59–71. https://doi.org/10.1016/j.optlaseng.2016.10.001

    Article  Google Scholar 

  54. Trias D, Costa J, Turon A, Hurtado JE (2006) Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater 54:3471–3484. https://doi.org/10.1016/j.actamat.2006.03.042

    Article  Google Scholar 

  55. Lawrence JM, Neacsu V, Advani SG (2009) Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM. Compos A Appl Sci Manuf 40:1053–1064. https://doi.org/10.1016/j.compositesa.2009.04.013

    Article  Google Scholar 

  56. Verleye B, Lomov SV, Long A, Verpoest I, Roose D (2010) Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Compos A Appl Sci Manuf 41:29–35. https://doi.org/10.1016/j.compositesa.2009.06.011

    Article  Google Scholar 

  57. Gebart BR (1992) Permeability of unidirectional reinforcements for RTM. J Compos Mater 26:1100–1133. https://doi.org/10.1177/002199839202600802

    Article  Google Scholar 

  58. Sorrentino L, Bellini C (2016) In-process monitoring of cure degree by coplanar plate sensors. Int J Adv Manuf Technol 86:2851–2859. https://doi.org/10.1007/s00170-016-8338-5

    Article  Google Scholar 

  59. Carlone P, Palazzo GS (2014) Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors. Appl Compos Mater 22:543–557. https://doi.org/10.1007/s10443-014-9422-3

    Article  Google Scholar 

  60. Waterbury MC, Drzal LT (1989) Determination of fiber volume fractions by optical numeric volume fraction analysis. J Reinf Plast Compos 8:627–636. https://doi.org/10.1177/073168448900800605

    Article  Google Scholar 

  61. Romanov V, Lomov SV, Swolfs Y, Orlova S, Gorbatikh L, Verpoest I (2013) Statistical analysis of real and simulated fibre arrangements in unidirectional composites. Compos Sci Technol 87:126–134. https://doi.org/10.1016/j.compscitech.2013.07.030

    Article  Google Scholar 

  62. Žaloudková M Image analysis of the fibre volume fraction and the porosity of carbon-carbon composite materials. https://www.irsm.cas.cz/materialy/oddeleni/5/bulletin/2001_bulletin.pdf

  63. Simacek P, Advani SG (2003) A numerical model to predict fiber tow saturation during liquid composite molding. Compos Sci Technol 63:1725–1736. https://doi.org/10.1016/S0266-3538(03)00155-6

    Article  Google Scholar 

  64. Tan H, Pillai KM (2010) Modeling unsaturated flow in dual-scale fiber mats of liquid composite molding: some recent developments. 10th Int Conf Flow Process Compos Mater 1–5

  65. Wang Y, Grove SM (2008) Modelling microscopic flow in woven fabric reinforcements and its application in dual-scale resin infusion modelling. Compos A Appl Sci Manuf 39:843–855. https://doi.org/10.1016/j.compositesa.2008.01.014

    Article  Google Scholar 

  66. Acheson JA, Simacek P, Advani SG (2004) The implications of fiber compaction and saturation on fully coupled VARTM simulation. Compos A Appl Sci Manuf 35:159–169. https://doi.org/10.1016/j.compositesa.2003.02.001

    Article  Google Scholar 

  67. Tan H, Pillai KM (2012) Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: isothermal flows. Compos A Appl Sci Manuf 43:1–13. https://doi.org/10.1016/j.compositesa.2010.12.013

    Article  Google Scholar 

  68. Simacek P, Advani SG (2007) Modeling resin flow and fiber tow saturation induced by distribution media collapse in VARTM. Compos Sci Technol 67:2757–2769. https://doi.org/10.1016/j.compscitech.2007.02.008

    Article  Google Scholar 

  69. Yang Y, Chiesura G, Vervust T, Bossuyt F, Luyckx G, Degrieck J, Vanfleteren J (2016) Design and fabrication of a flexible dielectric sensor system for in situ and real-time production monitoring of glass fibre reinforced composites. Sensors Actuators A Phys 243:103–110. https://doi.org/10.1016/j.sna.2016.03.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Carlone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlone, P., Rubino, F., Paradiso, V. et al. Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int J Adv Manuf Technol 96, 2215–2230 (2018). https://doi.org/10.1007/s00170-018-1703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1703-9

Keywords

Navigation