Skip to main content
Log in

Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a two-dimensional ultrasonic-assisted polishing Inconel718 nickel-based alloy has been investigated. This polishing technique combines the functions of ultrasonic machining and conventional mechanical polishing, which improves the material removal rate (MRR) of the Inconel718 nickel-based alloy by nearly two times (from 220 nm/min to 415 nm/min), and the surface roughness and average standard deviation of the roughness values are significantly reduced. The MRR model of two-dimensional ultrasonic-assisted polishing Inconel718 nickel-based alloy was established by analyzing the mechanism of material removal and the movement of abrasive grains, including the polishing pad material and properties, abrasive particle size and ultrasonic vibration frequency and amplitude and other related polishing process parameters. The experimental results show that the MRR prediction model of ultrasonic-assisted polishing material has a good consistency with the experimental results. The model can be used to predict and guide the two-dimensional ultrasonic-assisted polishing process of Inconel718.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Machinability investigation of Inconel 718 in high-speed turning. Int J Adv Manuf Technol 45(5–6):421–429. https://doi.org/10.1007/s00170-009-1987-x

    Article  Google Scholar 

  2. Oezkaya E, Beer N, Biermann D (2016) Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718. Int J Mach Tools Manuf 108:52–65. https://doi.org/10.1016/j.ijmachtools.2016.06.003

    Article  Google Scholar 

  3. Jafarian F, Amirabadi H, Fattahi M (2013) Improving surface integrity in finish machining of Inconel 718 alloy using intelligent systems. Int J Adv Manuf Technol 71(5–8):817–827. https://doi.org/10.1007/s00170-013-5528-2

    Google Scholar 

  4. Hao Z, Gao D, Fan Y, Han R (2011) New observations on tool wear mechanism in dry machining Inconel718. Int J Mach Tools Manuf 51(12):973–979. https://doi.org/10.1016/j.ijmachtools.2011.08.018

    Article  Google Scholar 

  5. Hafiz AMK, Bordatchev Peng Y, Wu YB, Liang ZQ, Guo YB, Lin X (2010) An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration. Int J Adv Manuf Technol 54(9–12):941–947. https://doi.org/10.1007/s00170-010-2991-x

    Google Scholar 

  6. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255. https://doi.org/10.1016/S0890-6955(97)00036-9

    Article  Google Scholar 

  7. Peng Y, Wu YB, Liang ZQ, Guo YB, Lin X (2010) An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration. Int J Adv Manuf Technol 54(9–12):941–947. https://doi.org/10.1007/s00170-010-2991-x

    Google Scholar 

  8. Suzuki H, Hamada S, Okino T, Kondo M, Yamagata Y, Higuchi T (2010) Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann 59(1):347–350. https://doi.org/10.1016/j.cirp.2010.03.117

    Article  Google Scholar 

  9. Guo J, Morita S-y, Hara M, Yamagata Y, Higuchi T (2012) Ultra-precision finishing of micro-aspheric mold using a magnetostrictive vibrating polisher. CIRP Ann 61(1):371–374. https://doi.org/10.1016/j.cirp.2012.03.141

    Article  Google Scholar 

  10. Guo J, Suzuki H, Higuchi T (2013) Development of micro polishing system using a magnetostrictive vibrating polisher. Precis Eng 37(1):81–87. https://doi.org/10.1016/j.precisioneng.2012.07.003

    Article  Google Scholar 

  11. Wang Y, Yin SH, Shinmura T (2009) Material removal mechanism in vibration-assisted finishing. Adv Mater Res 69-70:158–162. https://doi.org/10.4028/www.scientific.net/AMR.69-70.158

    Article  Google Scholar 

  12. Yin SH, Wang Y, Shinmura T, Zhu YJ, Chen FJ (2008) Material removal mechanism in vibration-assisted magnetic abrasive finishing. Adv Mater Res 53-54:57–63. https://doi.org/10.4028/www.scientific.net/AMR.53-54.57

    Article  Google Scholar 

  13. Carpio R, Farkas J, Jairath R (1995) Initial study on copper CMP slurry chemistries. Thin Solid Films 266(2):238–244. https://doi.org/10.1016/0040-6090(95)06649-7

    Article  Google Scholar 

  14. Liu D, Yan R, Chen T (2017) Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials. Int J Adv Manuf Technol 92(1–4):81–99. https://doi.org/10.1007/s00170-017-0081-z

    Article  Google Scholar 

  15. Chang H, Tsung TT, Yang YC, Chen LC, Lin HM, Lin CK, Jwo CS (2004) Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode. Int J Adv Manuf Technol 26(5–6):552–558. https://doi.org/10.1007/s00170-003-2029-8

    Google Scholar 

  16. Peng J, Lau ST, Chao C, Dai JY, Chan HL, Luo HS, Zhu BP, Zhou QF, Shung KK (2008) PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers. Appl Phys A Mater Sci Process 2008:161–163. https://doi.org/10.1109/ULTSYM.2008.0039

    Google Scholar 

  17. Xu W, Lu X, Pan G, Lei Y, Luo J (2010) Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate. Appl Surf Sci 256(12):3936–3940. https://doi.org/10.1016/j.apsusc.2010.01.053

    Article  Google Scholar 

  18. Murata J, Yodogawa K, Ban K (2017) Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles. Int J Mach Tools Manuf 114:1–7. https://doi.org/10.1016/j.ijmachtools.2016.11.007

    Article  Google Scholar 

  19. Tsai M-Y, Yang W-Z (2012) Combined ultrasonic vibration and chemical mechanical polishing of copper substrates. Int J Mach Tools Manuf 53(1):69–76. https://doi.org/10.1016/j.ijmachtools.2011.09.009

    Article  Google Scholar 

  20. Tso PL, Chang YC (2010) Study on chemical mechanical polishing with ultrasonic vibration. Adv Mater Res 126-128:311–315. https://doi.org/10.4028/www.scientific.net/AMR.126-128.311

    Article  Google Scholar 

  21. Jeng Y-R, Huang P-Y (2005) A material removal rate model considering interfacial micro-contact wear behavior for chemical mechanical polishing. J Tribol 127(1):190. https://doi.org/10.1115/1.1828068

    Article  Google Scholar 

  22. Huang PY (2005) A material removal rate model considering interfacial micro-contact wear behavior for chemical mechanical polishing. J Tribol 127(1):190–197. https://doi.org/10.1115/1.1828068

    Article  Google Scholar 

  23. Yu T, Asplund DT, Bastawros AF, Chandra A (2016) Performance and modeling of paired polishing process. Int J Mach Tools Manuf 109:49–57. https://doi.org/10.1016/j.ijmachtools.2016.07.003

    Article  Google Scholar 

  24. Zhao Y, Chang L (2002) A micro-contact and wear model for chemical–mechanical polishing of silicon wafers. Wear 252(3):220–226. https://doi.org/10.1016/S0043-1648(01)00871-7

    Article  Google Scholar 

  25. Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73. https://doi.org/10.1016/j.ijmachtools.2013.11.003

    Article  Google Scholar 

  26. Tawakoli T, Azarhoushang B, Rabiey M (2008) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9–10):883–891. https://doi.org/10.1007/s00170-008-1646-7

    Google Scholar 

  27. Guo D, Li J, Xie G, Wang Y, Luo J (2014) Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis. Langmuir 30(24):7206–7212. https://doi.org/10.1021/la501485e

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of National Nature Science Foundation of China (No. U1508206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbiao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Yang, X., An, J. et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy. Int J Adv Manuf Technol 96, 657–667 (2018). https://doi.org/10.1007/s00170-018-1609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1609-6

Keywords

Navigation