Skip to main content
Log in

FEM prediction of welding residual stresses in fibre laser-welded AA 2024-T3 and comparison with experimental measurement

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Welding generates a considerable amount of residual stresses which affect the structural integrity of welded components. It is often assumed that the magnitude of residual stresses around the welded joint is as high as the yield stress of the material. In this investigation, such assumption was found to be overly conservative and failed to accurately represent the distribution of residual stresses in fibre laser-welded aluminium alloy 2024-T3 sheets. Welding simulation based on the finite element method was used to reliably determine the distribution and magnitude of transient residual stress fields and distortions in thin sheets welded using three different sets of welding parameters. The accuracy of the finite element models was checked by calibrating with experimentally measured weld pool geometries and temperature field prior to conducting parametric studies. X-ray and neutron diffraction measurements were performed on the surface and in the bulk of the welded components, respectively, and compared with numerical results. The influence of weld metal softening, welding parameters and restraints on residual stresses and distortion were investigated systematically by numerically simulating ideal conditions which eliminate the practical limitations of conducting experimental studies, for process optimization as well as evaluation of in-service structure integrity and failure modes of the welded sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding RG, Ojo OA, Chaturvedi MC (2006) Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6. Scr Mater 54(5):859–864. https://doi.org/10.1016/j.scriptamat.2005.11.010

    Article  Google Scholar 

  2. Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser welding. Phys Procedia 39:8–16. https://doi.org/10.1016/j.phpro.2012.10.008

    Article  Google Scholar 

  3. Dittrich D, Standfuss J, Liebscher J, Brenner B, Beyer E (2011) Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design—first results. Phys Procedia 12:113–122. https://doi.org/10.1016/j.phpro.2011.03.015

    Article  Google Scholar 

  4. Chen L, He E, Ahn J, Dear J (2014) Parametric optimization and joint heterogeneity characterization of fiber laser welding of AA2024-T3. In: Proceedings of the 67th Annual Assembly of the International Institute of Welding. International Institute of Welding, Seoul, KR, pp 1–9

  5. Ahn J, Chen L, Davies CM, Dear JP (2014) Digital image correlation for determination of local constitutive properties of fibre laser welding joints in AA2024-T3. In: Proceedings of the 16th International Conference on Experimental Mechanics. University of Cambridge, Cambridge, GB, pp 1–2

  6. Ahn J, He E, Chen L, Dear J, Davies C (2017) The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3. J Manuf Process 29:62–73. https://doi.org/10.1016/j.jmapro.2017.07.011

    Article  Google Scholar 

  7. Ahn J, Chen L, He E, Davies CM, Dear JP (2017) Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3. J Manuf Process 25:26–36. https://doi.org/10.1016/j.jmapro.2016.10.006

    Article  Google Scholar 

  8. ISO Standard 13919–1, 2011, Welding—electron and laser-beam welded joints—guidance on quality levels for imperfections—part 1: steel, ISO, 2011, www.iso.org

  9. ISO Standard 13919-2, 2011, Welding—electron and laser-beam welded joints—guidance on quality levels for imperfections—part 2: aluminium and its weldable alloys, ISO, 2011, www.iso.org

  10. AWS D17.1 Specification for fusion welding for aerospace applications

  11. Zink W (2000) Integral solutions for fuselage shells. In: Peters M, Kaysser WA (eds) Proceedings of the 19th European Conference on Advanced Aerospace Materials—Materials for Aerospace Applications. DGLR-Bericht, Munich, pp 25–35

    Google Scholar 

  12. Liu J, Watanabe I, Yoshida K, Atsuta M (2002) Joint strength of laser-welded titanium. Dent Mater 18(2):143–148. https://doi.org/10.1016/S0109-5641(01)00033-1

    Article  Google Scholar 

  13. Park MK, Sindhu RA, Lee SJ, Zai BA, Mehboob H (2009) A residual stress evaluation in laser welded lap joint with hole drilling method. Int J Precis Eng Manuf 10(5):89–95. https://doi.org/10.1007/s12541-009-0099-8

    Article  Google Scholar 

  14. DebRoy T, David SA (1995) Physical processes in fusion welding.pdf. Rev Mod Phys 67(1):85–112. https://doi.org/10.1103/RevModPhys.67.85

    Article  Google Scholar 

  15. Flores-Johnson EA, Muránsky O, Hamelin CJ, Bendeich PJ, Edwards L (2012) Numerical analysis of the effect of weld-induced residual stress and plastic damage on the ballistic performance of welded steel plate. Comput Mater Sci 58:131–139. https://doi.org/10.1016/j.commatsci.2012.02.009

    Article  Google Scholar 

  16. Masubuchi K (1980) Distortion in weldments. In: Analysis of welded structures: residual stresses, distortion, and their consequences. Pergamon Press Ltd, Oxford, pp 235–327. https://doi.org/10.1016/B978-0-08-022714-6.50014-9

    Chapter  Google Scholar 

  17. Masubuchi K (1980) Fundamental information on residual stresses. In: Analysis of welded structures: residual stresses, distortion, and their consequences, Pergamon Press Ltd Oxford, pp 94–111

  18. Saad G, Fayek SA, Fawzy A, Soliman HN, Mohammed G (2010) Deformation characteristics of Al-4043 alloy. Mater Sci Eng A 527(4-5):904–910. https://doi.org/10.1016/j.msea.2009.09.018

    Article  Google Scholar 

  19. Ahn J, He E, Chen L, Wimpory RC, Dear JP, Davies CM (2017) Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater Des 115:441–457. https://doi.org/10.1016/j.matdes.2016.11.078

    Article  Google Scholar 

  20. Davison R, Bland JA (1986) Generalized regression for CMMs. Int J Math Educ Sci Technol 17(3):305–309. https://doi.org/10.1080/0020739860170305

    Article  Google Scholar 

  21. Bayraktar FS, Staron P, Koçak M, Schreyer A (2008) Analysis of residual stress in laser welded aerospace aluminium T-joints by neutron diffraction and finite element modelling. Mater Sci Forum 571–572:355–360. https://doi.org/10.4028/www.scientific.net/MSF.571-572.355

    Article  Google Scholar 

  22. Radaj D (2003) Modelling of welding residual stresses and distortion. In: Welding residual stresses and distortion: calculation and measurement, 2nd ed. DVS-Verlag GmbH, Düsseldorf pp 100–272

  23. Davies CM, Ahn J, Tsunori M, Dye D, Nikbin KM (2015) The influence of pre-existing deformation on GMA welding distortion in thin steel plates. J Mater Eng Perform 24(1):261–273. https://doi.org/10.1007/s11665-014-1313-0

    Article  Google Scholar 

  24. Dean SW, Croucher T (2009) Minimizing machining distortion in aluminum alloys through successful application of uphill quenching—a process overview. J ASTM Int 6(7):101770. https://doi.org/10.1520/JAI101770

    Article  Google Scholar 

Download references

Acknowledgements

The strong support from the Aviation Industry Corporation of China (AVIC) and Beijing Aeronautical Manufacturing Technology Research Institute (BAMTRI) for this funded research is much appreciated. The research was performed at the AVIC Centre for Structural Design and Manufacture at Imperial College London. Finite element analysis results were obtained from work conducted on the Imperial College High-Performance Computing Service (doi: https://doi.org/10.14469/hpc/2232). Dr. C. M. Davies acknowledges the support of EPSRC under grant number EP/I004351/1. This research project has been supported by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’ Programme, CP-CSA_INFRA-2011-1.1.17 Number 233883 NMI3 II. We thank HZB and ISIS for the allocation of neutron radiation beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., He, E., Chen, L. et al. FEM prediction of welding residual stresses in fibre laser-welded AA 2024-T3 and comparison with experimental measurement. Int J Adv Manuf Technol 95, 4243–4263 (2018). https://doi.org/10.1007/s00170-017-1548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1548-7

Keywords

Navigation