Skip to main content

Advertisement

Log in

A review of digital manufacturing-based hybrid additive manufacturing processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

From Germany’s Industry 4.0 mission to Made in China 2025 and Make in India mission to British Factory of the Future in 2050, digital manufacturing (DM) is promoting in the world’s major industrial countries as a technology foundation of the future manufacturing. At the same time, in the different segments of the DM realm, different forms of information technologies (IT) are flourishing such as the following: computer-aided manufacturing, robotics control in manufacturing, and process simulation. This paper is aimed to review the latest initiatives of DM in the leading universities and major industrial countries. Along with, a critical literature review of various initiatives in the area of DM-assisted hybrid additive manufacturing (DM-HAM) has also been carried out. DM-HAM seems to be very promising for next generation multi-operational manufacturing as it is time saving and economical. The highlights of this review will provide a guide for the upcoming research activities in the area of DM-HAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butterfield J, Crosby S, Curran R, Price M, Armstrong CG, Raghunathan S, McAleenan D, Gibson C (2007) Optimization of aircraft fuselage assembly process using digital manufacturing. J Comput Inf Sci Eng 7(3):269–275. https://doi.org/10.1115/1.2753879

    Article  Google Scholar 

  2. Haba SA, Oancea G (2015) Digital manufacturing of air-cooled single-cylinder engine block. Int J Adv Manuf Technol 80(5-8):747–759. https://doi.org/10.1007/s00170-015-7038-x

    Article  Google Scholar 

  3. Reuding T, Meil P (2004) Predictive value of assessing vehicle interior design ergonomics in a virtual environment. J Comput Inf Sci Eng 4(2):109–113. https://doi.org/10.1115/1.1710867

    Article  Google Scholar 

  4. Williams DL, Finke DA, Medeiros DJ, Traband MT (2001) Discrete simulation development for a proposed shipyard steel processing facility. The 2001 winter simulation conference, Arlington, VA, 9–12th December

  5. Alexander D (2004) Integration releases the reins. J Aerosp Eng SAE Document Number 2-24-6-26:26–28

  6. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  7. Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625. https://doi.org/10.1016/j.jclepro.2015.05.009

    Article  Google Scholar 

  8. Riel A, Kreiner C, Macher G, Messnarz R (2017) Integrated design for tackling safety and security challenges of smart products and digital manufacturing. CIRP Ann Manuf Technol 66(1):177–180. https://doi.org/10.1016/j.cirp.2017.04.037

    Article  Google Scholar 

  9. Wu D, Thames JL, Rosen DW, Schaefer D (2012) Towards a cloud-based design and manufacturing paradigm: looking backward, looking forward. In proceedings of the ASME 2012 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2012, 18-32

  10. Zude Z, Shane X, Dejun C (2012) Fundamentals of digital manufacturing science. Springer, London

    Google Scholar 

  11. Digital Manufacturing. Content accessed from http://www.plm.automation.siemens.com/en_us/plm/digital-manufacturing.shtml

  12. Chryssolouris G, Mavrikios D, Papakostas N, Mourtzis D, Michalos G, Georgoulias K (2009) Digital manufacturing: history, perspectives, and outlook. Proc Inst Mech Eng B J Eng Manuf 223(5):451–462. https://doi.org/10.1243/09544054JEM1241

    Article  Google Scholar 

  13. Westkämper E (2007) Digital manufacturing in the global era. Digital Enterprise Technology. Cunha PF, Maropoulos PG (eds.), 3-14, ISBN: 978-0-387-49863-8

  14. Westkamper E (2007) Strategic development of factories under the influence of emergent technologies. CIRP Ann Manuf Technol 56(1):419–422. https://doi.org/10.1016/j.cirp.2007.05.100

    Article  Google Scholar 

  15. Wu D, Rosen DW, Wang L, Schaefer D (2015) Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput Aided Des 28(59):1–4

    Article  Google Scholar 

  16. Sarah A. A day at America’s digital manufacturing hub. Accessed at http://advancedmanufacturing.org/day-americas-digital-manufacturing-hub-dmdii/

  17. Alpenia A (2016) Germany looks to win the smart factory game in 2016. Acceded at http://www.redherring.com/startups/germany-looks-win-smart-factory-game-2016/

  18. Gao X, Guo T (2015) Ministry of intelligent published 94 special project of smart manufacturing. Tech. Rep., China Securities Co.,Ltd., Beijing

    Google Scholar 

  19. North American Manufacturing Research Institution of SME. Accessed at http://www.sme.org/namri/

  20. Lee J, Lapira E, Bagheri B, Kao HA (2013) Recent advances and trend in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41. https://doi.org/10.1016/j.mfglet.2013.09.005

    Article  Google Scholar 

  21. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  22. Lee J, Bagheri B, Kao HA, Lapira E (2015) Industry 4.0 and manufacturing transformation. Manuf Leadersh J 6:36–43

    Google Scholar 

  23. Smart LJ, Systems F (2015) Informatik-Spektrum 38:230–235

    Article  Google Scholar 

  24. Ameri F, Patil L (2012) Digital manufacturing market: a semantic web-based framework for agile supply chain deployment. J Intell Manuf 23(5):1817–1832. https://doi.org/10.1007/s10845-010-0495-z

    Article  Google Scholar 

  25. Davulcu H, Kifer M, Pokorny LR, Ramakrishnan CR, Ramakrishnan IV, Dawson S (1999) Modeling and analysis of interactions in virtual enterprises. In proceedings of 9th international workshop on research issues on data engineering: Information technology for virtual enterprises pp. 12-18

  26. Moon SK, Simpson TW, Kumara SRT (2009) An agent based recommender system for developing customized families of products. J Intell Manuf 20(6):649–659. https://doi.org/10.1007/s10845-008-0154-9

    Article  Google Scholar 

  27. Al-Mutawah K, Lee V, Cheung Y (2009) A new multi agent system framework for tacit knowledge management in manufacturing supply chains. J Intell Manuf 20(5):593–610. https://doi.org/10.1007/s10845-008-0142-0

    Article  Google Scholar 

  28. Chira O, Chira C, Roche T, Tormey D, Brennan A (2006) An agent-based approach to knowledge management in distributed design. J Intell Manuf 17(6):737–750. https://doi.org/10.1007/s10845-006-0042-0

    Article  Google Scholar 

  29. Parunak HVD, Sauter J, Fleischer M, Ward A (1999) The RAPPID project: symbiosis between industrial requirements and MAS research. Auton Agent Multi-Agent Syst 2(2):111–140. https://doi.org/10.1023/A:1010039424126

    Article  Google Scholar 

  30. Chamodrakas I, Batis D, Martakos D (2010) Supplier selection in electronic marketplaces using satisficing and fuzzy AHP. Expert Syst Appl 37(1):490–498. https://doi.org/10.1016/j.eswa.2009.05.043

    Article  Google Scholar 

  31. Chen JJ, Liu W, Li MZ, Wang CT (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27(11-12):1148–1152. https://doi.org/10.1007/s00170-004-2309-y

    Article  Google Scholar 

  32. Russ O (2001) The father of the second industrial revolution. Manuf Eng 127 (available at http://www.sme.org/Tertiary.aspx?id=36002)

  33. Cagliano R, Spina G (2000) Advanced manufacturing technologies and strategically exible production. J Oper Manag 18(2):169–190. https://doi.org/10.1016/S0272-6963(99)00022-4

    Article  Google Scholar 

  34. Lee C, Leem CS, Hwang I (2011) PDM and ERP integration methodology using digital manufacturing to support global manufacturing. Int J Adv Manuf Technol 53(1-4):399–409. https://doi.org/10.1007/s00170-010-2833-x

    Article  Google Scholar 

  35. Upton DM (1992) A flexible structure for computer-controlled manufacturing system. Manuf Rev 5:58–74 (available at http://eureka.sbs.ox.ac.uk/3308/)

    Google Scholar 

  36. Kelle P, Akbulut A (2005) The role of ERP tools in supply chain information sharing, cooperation, and cost optimization. Int J Prod Econ 93-94:41–52. https://doi.org/10.1016/j.ijpe.2004.06.004

    Article  Google Scholar 

  37. Akkermans HA, Bogerd P, Yucesan E, Van Wassenhove LN (2003) The impact of ERP on supply chain management: exploratory findings from a European Delphi study. Eur J Oper Res 146(2):284–301. https://doi.org/10.1016/S0377-2217(02)00550-7

    Article  MATH  Google Scholar 

  38. Da T (ed) (2004) Supply chains—a manager’s guide. Addison-Wesley, Boston

    Google Scholar 

  39. Andersen H, Jacobsen P Customer relationship management: a strategic imperative in the world of E-business. John Wiley & Sons, Toronto

  40. Enterprise resource planning. Accessed at https://en.wikipedia.org/wiki/Enterprise_resource_planning

  41. Narayan K, Rao K, Sarcar M (2008) Computer aided design and manufacturing. Prentice-Hall of India, New Delhi

    Google Scholar 

  42. Computer-aided engineering. Accessed at https://en.wikipedia.org/wiki/Computer-aided_engineering

  43. CNC CookBook. http://blog.cnccookbook.com/2015/01/20/results-2015-cad-survey/

  44. Top 5 3D modeling software companies. http://www.nanalyze.com/2016/11/top-3d-modeling-software-companies/

  45. King GS, Jones RP, Simner D (2003) A good practice model for implementation of computer-aided engineering analysis in product development. J Eng Des 14(3):315–331. https://doi.org/10.1080/0954482031000091077

    Article  Google Scholar 

  46. Bob W (2015) Result of our 2015 CAD Sruvey

  47. Liukkonen M, Tsai TN (2016) Toward decentralized intelligence in manufacturing: recent trends in automatic identification of things. Int J Adv Manuf Technol 87(9-12):2509–2531. https://doi.org/10.1007/s00170-016-8628-y

    Article  Google Scholar 

  48. Ranky PG (2004) A real-time manufacturing/assembly sys-tem performance evaluation and control model with integrated sensory feedback processing and visualization. Assem Autom 24:162–167

  49. O’Brien AL, Montague J (2015) Captains of the industry. Tech Rep 2015 (accessed at www.controlglobal.com)

  50. Varady T, Martin RR, Cox J (1997) Reverse engineering of geometric models – an introduction. Comput Aided Des 29(4):255–268. https://doi.org/10.1016/S0010-4485(96)00054-1

    Article  Google Scholar 

  51. Benko P, Martin RR, Varady T (2001) Algorithms for reverse engineering boundary representation models. Comput Aided Des 33(11):839–851. https://doi.org/10.1016/S0010-4485(01)00100-2

    Article  Google Scholar 

  52. Starly B, Lau A, Sun W, Lau W, Bradbury T (2005) Direct slicing of STEP based NURBS models for layered manufacturing. Comput Aided Des 37(4):387–397. https://doi.org/10.1016/j.cad.2004.06.014

    Article  Google Scholar 

  53. Ma YS, Fuh J (2008) Editorial: product lifecycle modelling, analysis and management. Comput Ind 59(2-3):107–109. https://doi.org/10.1016/j.compind.2007.06.005

    Article  Google Scholar 

  54. Kramer TR, Huang H, Messina E, Proctor FM, Scott H (2001) A feature based inspection and machining system. Comput Aided Des 33(9):653–669. https://doi.org/10.1016/S0010-4485(01)00070-7

    Article  Google Scholar 

  55. International Organization for Standardization (ISO) (2000) Industrial automation systems and integration: product data representation and exchange: integrated generic resource: part 42–geometric and topological representation, Geneva, Switzerland

  56. Jimeno A, Puerta A (2007) State of the art of the virtual reality applied to design and manufacturing processes. Int J Adv Manuf Technol 33(9-10):866–874. https://doi.org/10.1007/s00170-006-0534-2

    Article  Google Scholar 

  57. Baldwin L, Eldabi T, Hlupic V, Irani Z (2000) Enhancing simulation software for use in manufacturing. Logist Inf Manag 13(5):263–270. https://doi.org/10.1108/09576050010354014

    Article  Google Scholar 

  58. Fuchs P, Moreau G, Pascal G (2011) Virtual reality: concepts and technologies, 1st edn. CRC Press, Leiden

    Google Scholar 

  59. Bougaa M, Bornhofen S, Kadima H, Rivière A (2016) 3D interaction in virtual environments for systems engineering. Int J Comput Theory Eng 8(6):458–464. https://doi.org/10.7763/IJCTE.2016.V8.1089

    Article  Google Scholar 

  60. Dorozhkin DV, Vance VM, Rehn GD, Lemessi M (2012) Coupling of interactive manufacturing op-erations simulation and immersive virtual reality. Virtual Reality 16(1):15–23. https://doi.org/10.1007/s10055-010-0165-7

    Article  Google Scholar 

  61. Carlson P, Peters A, Gilbert S, Vance JM, Luse A (2015) Virtual training: learning transfer of assembly tasks. IEEE Trans Vis Comput Graph 21:1–14

    Article  Google Scholar 

  62. Jew SH (2011) Virtual immersive and 3D learning spaces: emerging technologies and trends. Hershey, Broadway. https://doi.org/10.4018/978-1-61692-825-4

    Book  Google Scholar 

  63. Fernandez RP, Alonso V (2015) Virtual reality in a shipbuilding environment. Adv Eng Softw 81:30–40. https://doi.org/10.1016/j.advengsoft.2014.11.001

    Article  Google Scholar 

  64. Peng X, Isaac B (2015) Haptic Interface technique in large-scale virtual environment. Comput-Aided Des Appl 12(5):601–607. https://doi.org/10.1080/16864360.2015.1014739

    Article  Google Scholar 

  65. Zhang L, Wang Z, Liu X (2014) Development of a collaborative 3D virtual monitoring system through integration of cloud computing and multi agent technology. Adv Mech Eng. https://doi.org/10.1155/2014/762091 (available at http://ade.sagepub.com/content/6/762091.full.pdf)

  66. John G (2015) How Ford goes further with virtual reality. Accessed at http://fortune.com/2015/09/23/ford-virtual-reality/

  67. Mell P, Grance T (2009) Perspectives on cloud computing and standards. NIST, USA

  68. Ren L, Zhang L, Wang L, Tao F, Chai X (2017) Cloud manufacturing: key characteristics and applications. Int J Comput Integr Manuf 30(6):501–515. https://doi.org/10.1080/0951192X.2014.902105

    Article  Google Scholar 

  69. Wu D, Thames JL, Rosen DW, Schaefer D (2013) Enhancing the product realization process with cloud-based design and manufacturing systems. J Comput Inf Sci Eng 13(4):041004. https://doi.org/10.1115/1.4025257

    Article  Google Scholar 

  70. Lin BH, Zhang L, Ren L, Chai XD, Tao F, Luo YL, Wang YZ, Yin C, Huang G, Zhao XP (2011) Further discussion on cloud manufacturing. Comput Integr Manuf Syst 17:449–457

    Google Scholar 

  71. Wattal S, Kumar A (2014) Cloud computing—an emerging trend in information technology. International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), 7-8th February. https://doi.org/10.1109/ICICICT.2014.6781273

  72. Mai J, Zhang L, Tao F, Ren L (2012) Architecture of hybrid cloud for manufacturing enterprise. Asia Simulation Conference (AsiaSim’2012) & the International Conference on System Simulation and Scientific Computing (ICSC’2012), Shanghai, China, pp 365–372

  73. Columbus L (2013) 10 ways cloud computing is revolutionizing manufacturing. Accessed at https://www.forbes.com/sites/louiscolumbus/2013/05/06/ten-ways-cloud-computing-is-revolutionizing-manufacturing/#1ccf9e5e859c

  74. Henderson N (2016) Talkin' cloud 100: top 100 CSPs revealed. Accessed at http://www.channelfutures.com/msp-501/2016-talkin-cloud-100-top-100-csps-revealed

  75. Nylund H, Salminen K, Andersson P (2008) Digital virtual holons—an approach to digital manufacturing systems. 41st CIRP Conference on Manufacturing Systems, pp 103–106

  76. Monostori L, BC C’j, Ka’da’r B, Pfeiffer A, Ilie-Zudor E, Keme’ny Z, Szathma’ri M (2010) Towards adaptive and digital manufacturing. Ann Rev Control 34(1):118–128. https://doi.org/10.1016/j.arcontrol.2010.02.007

    Article  Google Scholar 

  77. Li C, Chu B, Parslow C, Samuel J, Fox P (2017) Developing ontologies and web-based data management system for additive manufacturing processes. In Proceedings of ACM on web science conference, pp 395–396

  78. Zaman UKU, Siadat A, Rivette M, Baqai AA, Qiao L (2016) Integrated product-process design to suggest appropriate manufacturing technology: a review. Int J Adv Manuf Technol 91(1-4):1409–1430. https://doi.org/10.1007/s00170-016-9765-z

    Article  Google Scholar 

  79. Gibson I, Rosen D, Stucker B (2014) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd Edn. Springer

  80. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23(4):1117–1124. https://doi.org/10.1007/s00542-017-3342-8

    Article  Google Scholar 

  81. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46(1):151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  82. Wimpenny DI, Pandey PM, Kumar LJ (2017) Advances in 3D printing & additive manufacturing technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-0812-2

    Book  Google Scholar 

  83. Witherell P, Lu Y, Jones A (2017) Additive manufacturing: a trans-disciplinary experience. InTransdisciplinary Perspectives on Complex Systems 2017. Springer International Publishing, pp 145–175

  84. Sass S, Oxman R (2006) Materializing design: the implications of rapid prototyping in digital design. Des Stud 27(3):325–355. https://doi.org/10.1016/j.destud.2005.11.009

    Article  Google Scholar 

  85. Yang H, Xue D (2003) Recent research on developing web-based manufacturing systems: a review. Int J Prod Res 41(15):3601–3629. https://doi.org/10.1080/0020754031000120014

    Article  Google Scholar 

  86. Khorram Niaki M, Khorram Niaki M, Nonino F, Nonino F (2017) Impact of additive manufacturing on business competitiveness: a multiple case study. J Manuf Technol Manag 28(1):56–74. https://doi.org/10.1108/JMTM-01-2016-0001

    Article  Google Scholar 

  87. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  88. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12-13):1459–1468. https://doi.org/10.1016/j.ijmachtools.2005.09.005

    Article  Google Scholar 

  89. Hague R, Mansour S, Saleh N (2004) Material and design considerations for rapid manufacturing. Int J Prod Res 42(22):4691–4708. https://doi.org/10.1080/00207840410001733940

    Article  Google Scholar 

  90. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current State, future potential gaps and needs, and recommendations. J Manuf Sci Eng MANU-14-1231

  91. Bourell DL, Beaman JJ, Leu MC, Rosen DW (2009) A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. Workshop on Rapid Technologies, September 24th, pp 5–11

  92. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  93. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1-4):389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  94. Holmström J, Partanen J, Tuomi J, Walter M (2010) Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment. J Manuf Technol Manag 21(6):687–697. https://doi.org/10.1108/17410381011063996

    Article  Google Scholar 

  95. Iancu C, Iancu D, Stamcioiu A. From Cad model to 3D print via “STL” file format. Accessed at http://www.utgjiu.ro/revmec/mecanica/pdf/2010-01/13 Catalin%20Iancu.pdf

  96. Gibson I, Rosen DW, Stucker B (2009) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York

    Google Scholar 

  97. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47(2):525–540. https://doi.org/10.1016/S0007-8506(07)63240-5

    Article  Google Scholar 

  98. Baumann F, Roller D (2016) 3D printing process pipeline on the internet. InZEUS, pp 29–36

  99. Eyers DR, Potter AT (2015) E-commerce channels for additive manufacturing: an exploratory study. J Manuf Technol Manag 26(3):390–411. https://doi.org/10.1108/JMTM-08-2013-0102

    Article  Google Scholar 

  100. Lan H (2009) Web-based rapid prototyping and manufacturing systems: a review. Comput Ind 60(9):643–656. https://doi.org/10.1016/j.compind.2009.05.003

    Article  Google Scholar 

  101. Tzou JH, Chang YC (2001) Desktop rapid prototyping system with supervisory control and monitoring through internet. IEEEE/ASME Trans Mechatron 6:399–409

    Article  Google Scholar 

  102. Lan HB, Chin KS, Hong J (2005) Development of a tele-service system for RP service bureaus. Rapid Prototyp J 11(2):98–105. https://doi.org/10.1108/13552540510589467

    Article  Google Scholar 

  103. Luo CR, Tzou JH (2004) The development of an intelligent web-based rapid prototyping manufacturing system. IEEE Trans Autom Sci Eng 1(1):4–13. https://doi.org/10.1109/TASE.2004.829344

    Article  Google Scholar 

  104. Choi SH, Chan AMM (2004) A virtual prototyping system for rapid product development. Comput Aided Des 36(5):401–412. https://doi.org/10.1016/S0010-4485(03)00110-6

    Article  Google Scholar 

  105. Chang CC, Lee MY, Wang SH (2006) Digital denture manufacturing—an integrated technologies of abrasive computer tomography, CNC machining and rapid prototyping. Int J Adv Manuf Technol 31(1-2):41–49. https://doi.org/10.1007/s00170-005-0181-z

    Article  Google Scholar 

  106. Ding Y, Lan H, Hong J, Wu D (2004) An integrated manufacturing system for rapid tooling based on rapid prototyping. Robot Comput Integr Manuf 20(4):281–288. https://doi.org/10.1016/j.rcim.2003.10.010

    Article  Google Scholar 

  107. Tay FEH, Khanal YP, Kwong KK, Tan KC (2004) Distributed rapid prototyping—a framework for internet prototyping and manufacturing. Integr Manuf Syst 12:409–415

    Article  Google Scholar 

  108. Xu A, Hongye H, Qu Y, Gao Y (2005) VRPS-I: an Internet-based virtual rapid prototyping system. J Integr Des Process Sci 9:15–27

    Google Scholar 

  109. Cooper AG, Kang S, Kietzman JW, Prinz FB, Lombardi JL, Weiss LE (1999) Automated fabrication of complex moulded parts using mould shape deposition manufacturing. Mater Des 20(2-3):83–89. https://doi.org/10.1016/S0261-3069(99)00013-8

    Article  Google Scholar 

  110. Rajagopalan S, Pinilla JM, Losleben P (1998) Integrated design and manufacturing over the Internet. In ASME design engineering technical conferences, Atlanta, GA, pp 13–16

  111. Jiang P, Fukuda S (2001) TeleRP—an Internet web-based solution for remote rapid prototyping service and maintenance. Int J Comput Integr Manuf 14(1):83–94. https://doi.org/10.1080/09511920150214929

    Article  Google Scholar 

  112. Huang H, Ding YH, Lu B (2000) Research of the rapid prototype oriented tele-service system based on Internet and Intranet. J Xi’an Jiaotong Univ 34:52–57

    Google Scholar 

  113. Huang J, Jiang P, Yan J, Ma D, Jin Y (2000) Implementing internet/web-based rapid prototyping tele-manufacturing service. J Shanghai Jiaotong Univ 34(3):433–436

    Google Scholar 

  114. Onuh SO, Hon KKB (1998) Optimising build parameters for improved surface finish in stereolithography. Int J Mach Tools Manuf 38(4):329–342. https://doi.org/10.1016/S0890-6955(97)00068-0

    Article  Google Scholar 

  115. Karunakaran K, Suryakumar S, Pushpa V, Akula S (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf 26(5):490–499. https://doi.org/10.1016/j.rcim.2010.03.008

    Article  Google Scholar 

  116. Boivie K, Dolinsek S, Homar D (2011) Hybrid manufacturing: integration of additive technologies for competitive production of complex tools and products. In Proceedings of the International Research/Expert Conference: Trends in the Development of Machinery and Associated Technology, Czech Republic, 12–18 September 2011, 53–56

  117. Joshi PC, Kuruganti T, Duty CE, Peter WH, Ott RD, Love LJ, Blue CA (2012) Direct digital additive manufacturing technologies: path towards hybrid integration. IEEE, ISBN: 978-1-4673-2482-3/12

  118. 122D. Printed Electronics. Optomec web-reference. Accessed at www.optomec.com

  119. Diegel O, Singamneni S, Huang B, Gibson I (2011) Curved layer fused deposition modeling in conductive polymer additive manufacturing. Adv Mater Res 199-200:1984–1987. https://doi.org/10.4028/www.scientific.net/AMR.199-200.1984

    Article  Google Scholar 

  120. Mognol P, Rivette M, Jégou L, Lesprier T (2007) A first approach to choose between HSM, EDM and DMLS processes in hybrid rapid tooling. Rapid Prototyp J 13(1):7–16. https://doi.org/10.1108/13552540710719163

    Article  Google Scholar 

  121. Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, McIntosh D (2014) Hybrid processes in manufacturing. CIRP annals: manufacturing. Technology 63:561–583

    Google Scholar 

  122. Zhu Z, Dhokia V, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes-state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615. https://doi.org/10.1080/0951192X.2012.749530

    Article  Google Scholar 

  123. Nassehi A, Newman ST, Dhokia V, Zhu Z, Asrai RI (2011) Using formal methods to model hybrid manufacturing processes, enabling manufacturing competitiveness and economic sustainability. Proc. of the 4th Int. CIRP Conf. on Changeable, Agile (2011) Reconfigurable & Virtual production (CARV2011), pp 52–56

  124. Denkena B, Shpitalni M, Kowalski P, Molcho G, Zipori Y (2007) Knowledge management in process planning. CIRP annals: manufacturing. Technology 56:175–180

    Google Scholar 

  125. Jin GQ, Li WD, Gao L (2013) An adaptive process planning approach of rapid prototyping and manufacturing. Robot Comput Integr Manuf 29(1):23–38. https://doi.org/10.1016/j.rcim.2012.07.001

    Article  Google Scholar 

  126. Ren L, Sparks T, Ruan JZ, Liou F (2010) Integrated process planning for a multiaxis hybrid manufacturing system. J Manuf Sci Eng Trans ASME 132(2):021006–021015. https://doi.org/10.1115/1.4001122

    Article  Google Scholar 

  127. Zhu Z, Dhokia V, Newman ST, Nassehi A (2014) Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts. Int J Adv Manuf Technol 74(5-8):1115–1132. https://doi.org/10.1007/s00170-014-6053-7

    Article  Google Scholar 

  128. Kerbrat O, Mognol P, Hascoet JY (2011) A new DFM approach to combine machining and additive manufacturing. Comput Ind 62(7):684–692. https://doi.org/10.1016/j.compind.2011.04.003

    Article  Google Scholar 

  129. Newman ST, Zhu Z, Dhokia V, Shokrani A (2015) Process planning for additive and subtractive manufacturing technologies. CIRP Ann Manuf Technol 64(1):467–470. https://doi.org/10.1016/j.cirp.2015.04.109

    Article  Google Scholar 

  130. Ding D, Pan Z, Cuiuri D, Li H (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol 73(1-4):173–183. https://doi.org/10.1007/s00170-014-5808-5

    Article  Google Scholar 

  131. Jeng JY, Lin MC (2001) Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J Mater Process Technol 110(1):98–103. https://doi.org/10.1016/S0924-0136(00)00850-5

    Article  Google Scholar 

  132. Choi DS, Lee SH, Shin BS, Whang KH, Song YA, Park SH, Jee HS (2001) Development of a direct metal freeform fabrication technique using co2 laser welding and milling technology. J Mater Process Technol 113(1-3):273–279. https://doi.org/10.1016/S0924-0136(01)00652-5

    Article  Google Scholar 

  133. Nowotny S, Muenster R, Scharek S, Beyer E (2010) Integrated laser cell for combined laser cladding and milling. Assem Autom 30(1):36–38. https://doi.org/10.1108/01445151011016046

    Article  Google Scholar 

  134. Ruan J, Eiamsa-ard K, Liou F (2005) Automatic process planning and tool path generation of a multiaxis hybrid manufacturing system. J Manuf Process 7(1):57–68. https://doi.org/10.1016/S1526-6125(05)70082-7

    Article  Google Scholar 

  135. Suryakumar S, Karunakaran KP, Bernard A, Chandrasekhar U, Raghavender N, Sharma D (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. Comput Aided Des 43(4):331–344. https://doi.org/10.1016/j.cad.2011.01.006

    Article  Google Scholar 

  136. Song YA, Park S (2006) Experimental investigations into rapid prototyping of composites by novel hybrid deposition process. J Mater Process Technol 171(1):35–40. https://doi.org/10.1016/j.jmatprotec.2005.06.062

    Article  Google Scholar 

  137. Xiong X, Haiou Z, Guilan W, Guoxian W (2009) Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of super alloy. Robot Comput Integr Manuf 26:291–295

    Article  Google Scholar 

  138. Lanzetta M, Cutkosky MR (2008) Shape deposition manufacturing of biologically inspired hierarchical microstructures. CIRP Ann Manuf Technol 57(1):231–234. https://doi.org/10.1016/j.cirp.2008.03.102

    Article  Google Scholar 

  139. Merz R, Prinz F, Ramaswami K, Terk M, Weiss L (1994) Shape deposition manufacturing. Proceeding of Solid Freeform Fabrication pp. 1–8

  140. Zhu D, Zhu ZW, NS Q (2006) Abrasive polishing assisted nickel electroforming process. CIRP Ann Manuf Technol 55(1):193–196. https://doi.org/10.1016/S0007-8506(07)60396-5

    Article  Google Scholar 

  141. Kelkar A, Nagi R, Koc B (2005) Geometric algorithms for rapidly reconfigurable mold manufacturing of free-form objects. Comput Aided Des 37(1):1–16. https://doi.org/10.1016/j.cad.2004.03.001

    Article  Google Scholar 

  142. Giannitelli SM, Mozetic P, Trombetta M, Rainer A (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11. https://doi.org/10.1016/j.actbio.2015.06.032

    Article  Google Scholar 

  143. Hengsbach S, Lantada AD (2014) Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16(4):617–627. https://doi.org/10.1007/s10544-014-9864-2

    Article  Google Scholar 

  144. Joshi PC, Kuruganti T, Duty CE (2015) Printed and hybrid electronics enabled by digital additive manufacturing technologies. In: Srivasan TS, Sudarshan TS (eds) Additive manufacturing: innovations, advances, and applications, Chapter 5, CRC Press (Taylor and Francis)

  145. Li J, Wasley T, Nguyen TT, Ta VD, Shephard JD, Stringer J, Smith P, Esenturk E, Connaughton C, Kay R (2016) Hybrid additive manufacturing of 3D electronic systems. J Micromech Microeng 26(10):105005–105019. https://doi.org/10.1088/0960-1317/26/10/105005

    Article  Google Scholar 

  146. Ren L, Padathu AP, Ruan J, Sparks T, Liou FW (2006) Three dimensional die repair using a hybrid manufacturing system. Proceedings of Solid Freeform Fabrication Symposium. Austin TX

  147. Kostakis V, Papachristou M (2013) Commons-based peer production and digital fabrication: the case of a RepRap-based, Lego-built 3D printing-milling machine. Telematics Inform 31:434–443

    Article  Google Scholar 

  148. Friel RJ, Harrisa RA (2013) Ultrasonic additive manufacturing: a hybrid production process for novel functional products. Procedia CIRP 6:35–40. https://doi.org/10.1016/j.procir.2013.03.004

    Article  Google Scholar 

  149. Karunakaran KP, Suryakumar S, Pushpa V, Akula S (2009) Retrofitment of a CNC machine for hybrid layered manufacturing. Int J Adv Manuf Technol 45(7-8):690–703. https://doi.org/10.1007/s00170-009-2002-2

    Article  Google Scholar 

  150. Akula S, Karunakaran KP (2006) Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process. Robot Comput Integr Manuf 22(2):113–123. https://doi.org/10.1016/j.rcim.2005.02.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunpreet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, L., Ramakrishna, S. & Singh, S. A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95, 2281–2300 (2018). https://doi.org/10.1007/s00170-017-1345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1345-3

Keywords

Navigation