Skip to main content
Log in

Experimental and numerical prediction of the local thickness reduction defect of complex cross-sectional steel in cold roll forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the cold roll forming process of complex cross-sectional steel, the local thickness reduction is one of the major problems to be solved for increasing requirements regarding tolerances. The prediction of the local thickness reduction during the roll forming process in the bending zones is gaining more and more importance. Based on the elastic plasticity deformation theory, the 3D finite element analysis (FEA) models have been built by the professional software COPPA RF and MSC MARC to simulate the cold roll forming process. Roll forming tests and the local thickness reduction analyses were performed to compare with FEA simulation results. An application to a hat-shaped section profile and the effect of forming parameters on transverse strains and the local thickness reduction are discussed. The linear regression method was applied to evaluate its effect on the local thickness reduction by using Minitab software. Results indicate that the loading pattern and the roll diameter have the greatest impacts on local thickness reduction and transverse strains in the bending regions. The findings were applied to optimize the abatement of local thickness reduction for the novel elevator guide rail roll forming lines. The predicted thickness reduction values in cold roll forming proves in good agreement with experimental results, and the complex cross-sectional steel with high quality is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halmos GT (2006) Roll forming handbook, 1st edn. Taylor & Francis Group. CRC Press, Florida

    Google Scholar 

  2. Wiebenga JH, Weiss M, Rolfe B, van den Boogaard AH (2013) Product defect compensation by robust optimization of a cold roll forming process. J Mater Process Tech 213(6):978–986. https://doi.org/10.1016/j.jmatprotec. 2013.01.006

    Article  Google Scholar 

  3. Horvath CD (2010) Materials, design and manufacturing for lightweight vehicles, 1st edn. Woodhead publishing, Cambridge, pp 35–78

    Book  Google Scholar 

  4. Zhang LL, Tan NL, Liu C (2010) A new model for simulation of cold roll-forming of tubes by using spline finite strip method. J Shanghai Jiaotong Univ (English Edition) 15(1):70–75. https://doi.org/10.1007/s12204-010-8135-5

    Article  Google Scholar 

  5. Hong S, Lee S, Kim N (2001) A parametric study on forming length in roll forming. J Mater Process Tech 113(1): 774–778 113(1–3):774–778. https://doi.org/10.1016/S0924-0136(01)00711-7

    Article  Google Scholar 

  6. Bui QV, Ponthot JP (2008) Numerical simulation of cold roll-forming processes. J Mater Process Tech 202(13):275–282. https://doi.org/10.1016/j.jmatprotec.2007.08.073

    Article  Google Scholar 

  7. Zeng G, Li SH, ZQ Y, Lai XM (2009) Optimization design of roll profiles for cold roll forming based on response surface method. Mater Design 30(6):1930–1938. https://doi.org/10.1016/j.matdes.2008.09.018

    Article  Google Scholar 

  8. Paralikas J, Salonitis K, Chryssolouris G (2010) Optimization of roll forming process parameters-a semi empirical approach. Int J Adv Manuf Tech 47(9-12SI):1041–1052. https://doi.org/10.1007/s00170-009-2252-z

    Article  Google Scholar 

  9. Paralikas J, Salonitis K, Chryssolouris G (2011) Investigation of the effect of roll forming pass design on main redundant deformations on profiles from AHSS. Int J Adv Manuf Technol 56(5–8):475–491. https://doi.org/10.1007/s00170-011-3208-7

    Article  Google Scholar 

  10. Paralikas J, Salonitis K, Chryssolouris G (2009) Investigation of the effects of main roll-forming process parameters on quality for a V-section profile from AHSS. Int J Adv Manuf Technol 44(3–4):223–237. https://doi.org/10.1007/s00170-008-1822-9

    Article  Google Scholar 

  11. Paralikas J, Salonitis K, Chryssolouris G (2013) Energy efficiency of cold roll forming process. Int J Adv Manuf Technol 66(9–12):1271–1284. https://doi.org/10.1007/s00170-012-4405-8

    Article  Google Scholar 

  12. Paralikas J, Salonitis K, Chryssolouris G (2013) Robust optimization of the energy efficiency of the cold roll forming process. Int J Adv Manuf Technol 69(1–4):461–481. https://doi.org/10.1007/s00170-013-5011-0

    Article  Google Scholar 

  13. Cha W, Kim N (2013) Study on twisting and bowing of roll formed products made of high strength steel. Int J Precis Eng Man 14(9):1527–1533. https://doi.org/10.1007/s12541-013-0206-8

    Article  Google Scholar 

  14. Safdarian R, Naeini HM (2015) The effects of forming parameters on the cold roll forming of channel section. Thin Wall Struct 92:130–136. https://doi.org/10.1016/j.tws.2015.03.002

    Article  Google Scholar 

  15. Bidabadi BS, Naeini HM, Tehrani MS, Barghikar H (2016) Experimental and numerical study of bowing defects in cold roll-formed, U-channel sections. J Constr Steel Res 118:243–253. https://doi.org/10.1016/j.jcsr.2015.11.007

    Article  Google Scholar 

  16. Bidabadi BS, Naeini HM, Tafti RA, Barghikar H (2016) Experimental study of bowing defects in pre-notched channel section products in the cold roll forming process. Int J Adv Manuf Technol 87(1–4):997–1011. https://doi.org/10.1007/s00170-016-8547-y

    Article  Google Scholar 

  17. Abeyrathna B, Rolfe B, Hodgson P, Weiss M (2017) Local deformation in roll forming. Int J Adv Manuf Technol 88(9–12):2405–2415. https://doi.org/10.1007/s00170-016-8962-0

    Article  Google Scholar 

  18. Abeyrathna B, Rolfe B, Weiss M (2017) The effect of process and geometric parameters on longitudinal edge strain and product defects in cold roll forming. Int J Adv Manuf Technol 92(1–4):743–754. https://doi.org/10.1007/s00170-017-0164-x

    Article  Google Scholar 

  19. Traub T, Chen X, Groche P (2017) Experimental and numerical investigation of the bending zone in roll forming. Int J Mech Sci 131-132:956–970. https://doi.org/10.1016/j.ijmecsci.2017.07.056

    Article  Google Scholar 

  20. Panton SM, Duncan JL, Zhu SD (1996) Longitudinal and shear strain development in cold roll forming. J Mater Process Tech 60(1–4):219–224

    Article  Google Scholar 

  21. Sheikh MA, Palavilayil RR (2006) An assessment of finite element software for application to the roll-forming process. J Mater Process Tech 180(1–3):221–232. https://doi.org/10.1016/j.jmatprotec.2006.06.009

    Article  Google Scholar 

  22. Pastor MM, Bonada J, Roure F, Casafont M (2013) Residual stresses and initial imperfections in non-linear analysis. Eng Struct 46:493–507. https://doi.org/10.1016/j.engstruct.2012.08.013

    Article  Google Scholar 

  23. Zou TX, Zhou N, Peng YH, Tang D, Li DY (2016) Numerical simulation of the roll forming process of aluminum folded micro-channel tube. J Phys: Conference Series, IOP Publishing 734(3):32016

    Google Scholar 

  24. Bernuzzi C, Maxenti F (2015) European alternatives to design perforated thin-walled cold-formed beam–columns for steel storage systems. J Constr Steel Res 110:121–136. https://doi.org/10.1016/j.jcsr.2015.02.021

    Article  Google Scholar 

  25. Zeng G, Lai XM, ZQ Y, Lin ZQ (2009) Numerical simulation and sensitivity analysis of parameters for multistand roll forming of channel section with outer edge. J Iron Steel Res Int 16(1):32–37

    Article  Google Scholar 

  26. Henninger F, Friedrich K (2004) Production of textile reinforced thermoplastic profiles by roll forming. Compos Part A-Appl S 35(5):573–583. https://doi.org/10.1016/j.compositesa.2003.12.001

    Article  Google Scholar 

  27. Saffe SNBM, Nagamachi T, Ona H (2014) Residual stress around cut end of hat steel channel by roll forming. Procedia Eng 81:239–244. https://doi.org/10.1016/j.proeng.2014.09.157

    Article  Google Scholar 

  28. Ona H, Liu JY (2008) Cold forming technology, 1st edn. Chemical Industry Press, Beijing, pp 9–11

    Google Scholar 

  29. Wang XJ (1994) The production and application of roll formed section steel, 1st edn. Metallurgical Industry Press, Beijing, pp 282–286

    Google Scholar 

  30. Weiss M, Abeyrathna B, Gangoda DS, Mendiguren J, Wolfkamp H (2017) Bending behaviour and oil canning in roll forming a steel channel. Int J Adv Manuf Technol 91(5–8):2875–2884. https://doi.org/10.1007/s00170-016-9892-6

    Article  Google Scholar 

  31. Rossi B, Degée H, Boman R (2013) Numerical simulation of the roll forming of thin-walled sections and evaluation of corner strength enhancement. Finite Elem Anal Des 72:13–20. https://doi.org/10.1016/j.finel. 2013.04. 002

    Article  Google Scholar 

  32. Muller M, Barrans SM, Blunt L (2011) Predicting plastic deformation and work hardening during V-band formation. J Mater Process Tech 211(4):627–636. https://doi.org/10.1016/j.jmatprotec.2010.11.020

    Article  Google Scholar 

  33. Park JC, Yang DY, Cha MH, Kim DG, Nam JB (2014) Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross-sections. Int J Mach Tool Manu 86:68–80. https://doi.org/10.1016/j.ijmachtools.2014.07.001

    Article  Google Scholar 

  34. Abvabi A, Rolfe B, Hodgson PD, Weiss M (2015) The influence of residual stress on a roll forming process. Int J Mech Sci 101-102:124–136. https://doi.org/10.1016/j.ijmecsci.2015.08.004

    Article  Google Scholar 

  35. Hellborg S (2007) Finite element simulation of roll forming. Linköping University, Master Thesis

    Google Scholar 

  36. Alsamhan A, Pillinger I, Hartely P (2004) The development of real time re-meshing technique for simulating cold-roll-forming using FE methods. J Mater Process Tech 147(1):1–9. https://doi.org/10.1016/S0924-0136(03)00469-2

    Article  Google Scholar 

  37. Liu XL, Cao JG, Chai XT, Liu J, Zhao RG, Kong N (2017) Investigation of forming parameters on springback for ultra high strength steel considering Young’s modulus variation in cold roll forming. J Manuf Process 29:289–297. https://doi.org/10.1016/j.jmapro.2017.08.001

    Article  Google Scholar 

  38. Khalaj G, Pouraliakbar H, Jandaghi MR, Gholami A (2017) Microalloyed steel welds by HF-ERW technique: novel PWHT cycles, microstructure evolution and mechanical properties enhancement. Int J Pres Ves Pip 152:15–26. https://doi.org/10.1016/j.ijpvp.2017.04.003

    Article  Google Scholar 

  39. Jandaghi MR, Pouraliakbar H, Shiran MKG, Khalaj G, Shirazi M (2016) On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy. Mater Sci Eng A 657:431–440. https://doi.org/10.1016/j.msea. 2016.01.056

    Article  Google Scholar 

  40. Pouraliakbar H, Pakbaz M, Firooz S, Jandaghi MR, Khalaj G (2016) Study on the dynamic and static softening phenomena in Al–6Mg alloy during two-stage deformation through interrupted hot compression test. Measurement 77:50–53. https://doi.org/10.1016/j.measurement.2015.08.033

    Article  Google Scholar 

  41. Jandaghi MR, Pouraliakbar H (2017) Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed aluminum-manganese-silicon alloy. Mater Sci Eng A 679:493–503. https://doi.org/10.1016/j.msea.2016.10.054

    Article  Google Scholar 

  42. Pouraliakbar H, Jandaghi MR, Khalaj G (2017) Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Mater Design 124:34–46. https://doi.org/10.1016/j.matdes. 2017.03. 053

    Article  Google Scholar 

  43. Pouraliakbar H, Firooz S, Jandaghi MR, Khalaj G, Amirafshar A (2014) Combined effect of heat treatment and rolling on pre-strained and SPDed aluminum sheet. Mater Sci Eng A 612:371–379. https://doi.org/10.1016/j. msea.2014.06.044

    Article  Google Scholar 

  44. Pouraliakbar H, Jandaghi MR, Baygi SJM, Khalaj G (2017) Microanalysis of crystallographic characteristics and structural transformations in SPDed Al-Mn-Si alloy by dual-straining. J Alloy Compd 696:1189–1198. https://doi.org/10.1016/j.jallcom.2016.12.086

    Article  Google Scholar 

  45. Jandaghi MR, Pouraliakbar H, Khalaj G, Khalaj M, Heidarzadeh A (2016) Study on the post-rolling direction of severely plastic deformed aluminum-manganese-silicon alloy. Arch Civ Mech Eng 16(4):876–887. https://doi.org/10.1016/j.acme.2016.06.005

    Article  Google Scholar 

  46. Liu CF, Zhou WL, XS F, Chen GQ (2015) A new mathematical model for determining the longitudinal strain in cold roll forming process. Int J Adv Manuf Technol 79(5–8):1055–1061. https://doi.org/10.1007/s00170-015-6845-4

    Article  Google Scholar 

  47. Sun Y, Li YG, Daniel WJT, Meehan PA, Liu ZB, Ding SC (2017) Longitudinal strain development in chain-die forming AHSS products: analytical modelling, finite element analysis and experimental verification. J Mater Process Tech 243:322–334. https://doi.org/10.1016/j.jmatprotec.2016.12.019

    Article  Google Scholar 

  48. Qian Z, Sun Y, Meehan PA, Daniel WJT, Ding SC (2017) Experimental and numerical investigation of flange angle in chain-die formed AHSS U-channel sections. Int J Adv Manuf Tech 92(1–4):1231–1242. https://doi.org/10.1007/s00170-017-0159-7

    Article  Google Scholar 

  49. Sun Y, Li Y, Liu Z, Daniel WJT, Shi L, Meehan PA, Ding SC (2017) Experimental investigation and prediction of the maximum edge longitudinal membrane strain and springback of chain-die-formed AHSS U-channels using response surface methodology. Int J Adv Manuf Tech 90(5–8):1963–1976. https://doi.org/10.1007/ s00170-016-9522-3

    Article  Google Scholar 

  50. Navidi W (2011) Statistics for engineers and scientists, Third edn. McGraw-Hill, New York

Download references

Funding

The authors would like to acknowledge the financial support provided by the Innovation Method Fund of China (2016IM010300) and Lvyang Jinfeng Program for the Innovation Leading Talents (yzlyjfjh2015CX055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-guo Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xl., Cao, Jg., Chai, Xt. et al. Experimental and numerical prediction of the local thickness reduction defect of complex cross-sectional steel in cold roll forming. Int J Adv Manuf Technol 95, 1837–1848 (2018). https://doi.org/10.1007/s00170-017-1279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1279-9

Keywords

Navigation