Skip to main content
Log in

Three-dimensional numerical simulation for drilling of 2.5D carbon/carbon composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Drilling of carbon/carbon (C/C) composites is difficult to implement due to the materials’ high specific stiffness, brittleness, anisotropic, heterogeneous, and low thermal conductivity, resulting in tear, burr, poor surface quality, and rapid wear of cutters. Accurate and fast predictions of thrust forces and defects are important for C/C composites drilling process with high quality. In this paper, a finite element analysis method for drilling of 2.5D C/C composites is presented. An improved damage initiation model is proposed based on the Shokrieh-Lessard’s model and the Hashin’s failure criteria. Six different failure modes—X-direction fiber-matrix tension, X-direction fiber-matrix compression, Y-direction tension, Y-direction compression, normal tension, and normal compression—are considered and modeled separately. An improved 3D progressive failure model is developed to approximate real failure process of 2.5D C/C composites. For validation purpose, drilling tests have been performed and compared to the results of finite element analysis. The experimental result shows to be consistent well with the proposed model, yielding a relative difference of predicted thrust force from 8.07 to 13.86%. The model demonstrates its ability to predict thrust force, material failure process, and damage for different values of feedrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christ K, Hüttinger K (1993) Carbon-fiber-reinforced carbon composites fabricated with mesophase pitch. Carbon 31(5):731–750

    Article  Google Scholar 

  2. Savage G (1993) Applications of Carbon-carbon composites. Springer

  3. Buckley JD (1988) Carbon-carbon-an overview

  4. Windhorst T, Blount G (1997) Carbon-carbon composites: a summary of recent developments and applications. Mater Des 18(1):11–15. doi:10.1016/S0261-3069(97)00024-1

    Article  Google Scholar 

  5. Shan C, Wang X, Yang X, Lyu X (2016) Prediction of cutting forces in ball-end milling of 2.5D C/C composites. Chin J Aeronaut 29(3):824–830. doi:10.1016/j.cja.2015.12.015

    Article  Google Scholar 

  6. George PM, Raghunath BK, Manocha LM, Warrier AM (2004) EDM machining of carbon–carbon composite—a Taguchi approach. J Mater Process Technol 145(1):66–71. doi:10.1016/S0924-0136(03)00863-X

    Article  Google Scholar 

  7. Hocheng H, Guu YH, Tai NH (1998) The feasibility analysis of electrical-discharge machining of carbon-carbon composites. Mater Manuf Process 13(1):117–132. doi:10.1080/10426919808935223

    Article  Google Scholar 

  8. Kim D, Ramulu M (2004) Drilling process optimization for graphite/bismaleimide–titanium alloy stacks. Compos Struct 63(1):101–114. doi:10.1016/S0263-8223(03)00137-5

    Article  Google Scholar 

  9. Singh I, Bhatnagar N (2006) Drilling-induced damage in uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int J Adv Manuf Technol 27(9):877–882. doi:10.1007/s00170-004-2282-5

    Article  Google Scholar 

  10. Ferreira J, Coppini N, Neto FL (2001) Characteristics of carbon–carbon composite turning. J Mater Process Technol 109(1):65–71

    Article  Google Scholar 

  11. Li ZD, Zhao B, Tong JL, Duan P (2014) Study of carbon/carbon composite material surface morphology on ultrasonic vibration assisted milling. Key Eng Mater 579:181–185

    Article  Google Scholar 

  12. Shan C, Lin X, Wang X, Yan J, Cui D (2015) Defect analysis in drilling needle-punched carbon–carbon composites perpendicular to nonwoven fabrics. Adv Mech Eng 7(8):1–11. doi:10.1177/1687814015598494

    Article  Google Scholar 

  13. Krishnaraj V, Zitoune R, Davim JP (2013) Drilling of polymer-matrix composites. Springer, Heidelberg

    Book  Google Scholar 

  14. Abrao A, Rubio JC, Faria P, Davim JP (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Mater Des 29(2):508–513

    Article  Google Scholar 

  15. Rubio JC, Abrao A, Faria P, Correia AE, Davim JP (2008) Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48(6):715–720

    Article  Google Scholar 

  16. Davim JP, Rubio JC, Abrao A (2007) A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol 67(9):1939–1945

    Article  Google Scholar 

  17. Gaitonde V, Karnik S, Rubio JC, Correia AE, Abrao A, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203(1):431–438

    Article  Google Scholar 

  18. Singh I, Bhatnagar N (2006) Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int J Adv Manuf Technol 27(9):870–876. doi:10.1007/s00170-004-2280-7

    Article  Google Scholar 

  19. Feito N, Diaz-Álvarez J, López-Puente J, Miguelez MH (2016) Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Compos Struct 138:285–294. doi:10.1016/j.compstruct.2015.11.065

    Article  Google Scholar 

  20. Davim JP (2009) Drilling of composite materials. NOVA Publishers, New York

    Google Scholar 

  21. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. doi:10.1016/j.ijmachtools.2012.01.006

    Article  Google Scholar 

  22. Liu D, Tang Y, Cong WL (2012) A review of mechanical drilling for composite laminates. Compos Struct 94(4):1265–1279. doi:10.1016/j.compstruct.2011.11.024

    Article  Google Scholar 

  23. Bandhu D, Sangwan SS, Verma M (2014) A review of drilling of carbon fiber reinforced plastic composite materials. Int J Curr Eng Technol 14(3):1749–1752

    Google Scholar 

  24. Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597–613. doi:10.1016/S0020-7403(96)00061-6

    Article  MATH  Google Scholar 

  25. Santiuste C, Soldani X, Miguélez MH (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92(3):691–698. doi:10.1016/j.compstruct.2009.09.021

    Article  Google Scholar 

  26. Soldani X, Santiuste C, Muñoz-Sánchez A, Miguélez MH (2011) Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos Part A 42(9):1205–1216. doi:10.1016/j.compositesa.2011.04.023

    Article  Google Scholar 

  27. Santiuste C, Olmedo A, Soldani X, Miguélez H (2012) Delamination prediction in orthogonal machining of carbon long fiber-reinforced polymer composites. J Reinf Plast Compos 31(13):875–885

    Article  Google Scholar 

  28. Zitoune R, Collombet F (2007) Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Compos Part A 38(3):858–866. doi:10.1016/j.compositesa.2006.07.009

    Article  Google Scholar 

  29. Durão LMP, de Moura MFSF, Marques AT (2008) Numerical prediction of delamination onset in carbon/epoxy composites drilling. Eng Fract Mech 75(9):2767–2778. doi:10.1016/j.engfracmech.2007.03.009

    Article  Google Scholar 

  30. Isbilir O, Ghassemieh E (2012) Finite element analysis of Drilling of carbon fibre reinforced composites. Appl Compos Mater 19(3):637–656. doi:10.1007/s10443-011-9224-9

    Article  Google Scholar 

  31. Hashin Z (1981) Fatigue failure criteria for unidirectional fiber composites. J Appl Mech 48(4):846–852. doi:10.1115/1.3157744

    Article  MATH  Google Scholar 

  32. Isbilir O, Ghassemieh E (2013) Numerical investigation of the effects of drill geometry on drilling induced delamination of carbon fiber reinforced composites. Compos Struct 105:126–133. doi:10.1016/j.compstruct.2013.04.026

    Article  Google Scholar 

  33. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos Part A 47:41–51. doi:10.1016/j.compositesa.2012.11.020

    Article  Google Scholar 

  34. Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenologicaL Models1. Compos Sci Technol 58(7):1045–1067. doi:10.1016/S0266-3538(96)00140-6

    Article  Google Scholar 

  35. Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modelling incorporating failure. Compos Struct 86(1–3):194–210. doi:10.1016/j.compstruct.2008.03.007

    Article  Google Scholar 

  36. Shokrieh MM, Lessard LB (2000) Progressive fatigue damage modeling of composite materials, part I: modeling. J Compos Mater 34(13):1056–1080. doi:10.1177/002199830003401301

    Article  Google Scholar 

  37. Kachanov L (2013) Introduction to continuum damage mechanics, vol 10. Springer Science & Business Media

  38. Falzon BG, Apruzzese P (2011) Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation. Compos Struct 93(2):1039–1046. doi:10.1016/j.compstruct.2010.06.028

    Article  Google Scholar 

  39. Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38(11):2333–2341. doi:10.1016/j.compositesa.2007.01.017

    Article  Google Scholar 

  40. Qinlu Y, Yulong L, Hejun L, Shuping L, Lingjun G (2008) Quasi-static and dynamic compressive fracture behavior of carbon/carbon composites. Carbon 46(4):699–703. doi:10.1016/j.carbon.2008.01.031

    Article  Google Scholar 

  41. Falzon BG, Apruzzese P (2011) Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: applications. Compos Struct 93(2):1047–1053. doi:10.1016/j.compstruct.2010.06.022

    Article  Google Scholar 

  42. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Constr 16(3):155–177. doi:10.1007/bf02486267

    Article  Google Scholar 

  43. Klinkova O, Rech J, Drapier S, Bergheau J-M (2011) Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol Int 44(12):2050–2058. doi:10.1016/j.triboint.2011.09.006

    Article  Google Scholar 

  44. Davim JP (2009) Machining composite materials. NOVA Publishers, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenwei Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Dang, J., Yan, J. et al. Three-dimensional numerical simulation for drilling of 2.5D carbon/carbon composites. Int J Adv Manuf Technol 93, 2985–2996 (2017). https://doi.org/10.1007/s00170-017-0653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0653-y

Keywords

Navigation