Skip to main content
Log in

The roughness characterization in cylinders obtained by conventional and flexible honing processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Crankcase cylinders of hermetic compressors are produced in large numbers for refrigerators of domestic use. They are, usually, machined by using a three-stage honing process (roughing, semi-finishing, and finishing), and for their characterization during the quality control, an evaluation of roughness is carried out. Although the roughness represents a peerless factor to characterize the honed surfaces, its implementation is a challenge for scientists and technicians in general due to the difficulty of detecting the difference between the surface finish on different honing stages. This paper assesses the roughness of parts obtained by flexible honing applied after conventional honing process by using a portable surface roughness tester and an interferometer in white light mode (chromatic length aberration—CLA). An extensive evaluation of roughness was made using several roughness parameters, graphics, and curves that include the following: roughness profile, topographies, amplitude parameters, Rk family parameters, volume, and feature parameters. The measurement uncertainty associated with all roughness parameters was estimated by applying the methods proposed in the JCGM 101. The results obtained after flexible honing were compared with those found in parts machined by conventional honing. This experimentation showed that flexible honing process when applied after the conventional honing provided an essential improvement of the surface finish and an increase of the repeatability and the quality of honed parts. The volume and the feature parameters can be used as alternative to appropriately characterizing honed surfaces, because they were able of detecting the changes caused on the surface by different stage of honing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller ML (1993) Flexible honing. A study of cylinder wall microstructure. Proceedings understanding. Basics honing, SME – Soc. Mech. Eng.;9.

  2. Barton G, Haasis K (1993) Characteristics of honing in: understanding the basics of honing. Soc Manuf Eng.;37.

  3. Anderberg C, Pawlus P, Rosén B-G, Thomas TR (2009) Alternative descriptions of roughness for cylinder liner production. J Mater Process Technol 209(4):1936–1942

    Article  Google Scholar 

  4. Clark JR, Grant MB (1992) The effect of surface finish on component performance. Int J Mach Tools Manufact 32:37–66

    Article  Google Scholar 

  5. International Organization for Standardization (1996) ISO 13565–2:1996 Geometrical Product Specifications (GPS) -- Surface texture: Profile method; Surfaces having stratified functional properties -- Part 2: Height characterization using the linear material ratio curve.

  6. Zipin RB (1990) Analysis of the Rk surface roughness parameter proposals. Precis Eng 12(2):106–108. doi:10.1016/0141-6359(90)90036-X

  7. Franco LA, Sinatora A (2015) 3D surface parameters (ISO 25178-2): actual meaning of Spk and its relationship to Vmp. Precis Eng 40:106–111. doi:10.1016/j.precisioneng.2014.10.011

    Article  Google Scholar 

  8. Buj-Corral I, Vivancos-Calvet J (2011) Roughness variability in the honing process of steel cylinders with CBN metal bonded tools. Precis Eng 35(2):289–293. doi:10.1016/j.precisioneng.2010.11.004

    Article  Google Scholar 

  9. Pawlus P, Cieslak T, Mathia T (2009) The study of cylinder liner plateau honing process. J Mater Process Technol 209(20):6078–6086. doi:10.1016/j.jmatprotec.2009.04.025

    Article  Google Scholar 

  10. Bhushan B (2000) Modern tribology handbook. Volume 1. Chapter 2 surface roughness analysis and measurement techniques. CRC press. LLC. Boca Raton, Flórida, EUA, pp 49–120. ISBN 0-8493-8403-6.

  11. Chand M, Mehta A, Sharma R, Ojha VN, Chaudhary KP (2011) Roughness measurement using optical profiler with self-reference laser and stylus instrument — a comparative study. Indian J Pure Appl. Phys.;49(May):335–339.

  12. Poon CY, Bhushan B (1995) Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear 190(1):76–88

    Article  Google Scholar 

  13. Vorburger TV, Rhee H-G, Renegar TB, Song J-F, Zheng A (2007) Comparison of optical and stylus methods for measurement of surface texture. Int J Adv Manuf Technol 33(1–2):110–118

    Article  Google Scholar 

  14. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, OIML (2008) Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty in measurement” — Propagation of distributions using a Monte Carlo method. Evaluation. JCGM 101:2(September):90.

  15. International Organization for Standardization (1996) ISO 12085:1996 - Geometrical Product Specifications (GPS) -- Surface texture: Profile method -- Motif parameters.

  16. Haitjema H (1998) Uncertainty analysis of roughness standard calibration using stylus instruments. Precis Eng 22(97):110–119

    Article  Google Scholar 

  17. Stout K, Sullivan P, Dong W, Mainsah E, Luo N, Mathia T, Zahouani H (1993) The development of methods for the characterisation of roughness in three dimensions. EUR(Luxembourg) 358.

  18. Schmitt C, Bähre D (2013) An approach to the calculation of process forces during the precision honing of small bores. Procedia CIRP 7:282–287. doi:10.1016/j.procir.2013.05.048

    Article  Google Scholar 

  19. Blateyron F (2013) Characterisation of areal surface texture. Capter 2 area filed parameters. Pp 15–43.

  20. Petzing, J, Coupland J, Leach RK (2010) The measurement of rough surface topography using coherence scanning interferometry.Guide 116.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Silveira Leal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arantes, L.J., Fernandes, K.A., Schramm, C.R. et al. The roughness characterization in cylinders obtained by conventional and flexible honing processes. Int J Adv Manuf Technol 93, 635–649 (2017). https://doi.org/10.1007/s00170-017-0544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0544-2

Keywords

Navigation