Skip to main content
Log in

Narrow-gap laser welding using filler wire of thick steel plates

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thick-section steel has been widely used in many heavy industries. Traditionally, very thick steel plates could be welded by using submerged arc welding and other welding processes. However, there were more or less drawbacks in these welding methods. Laser welding, a high-energy density welding method, is being considered for such structures to improve the production efficiency and reduce the residual stresses of the joints. In this study, butt joints with narrow gap were welded using a high-power CO2 laser. The effect of welding parameters including the relative position between the laser beam and the filler wire, welding speed, and the distance from the intersection of the beam and wire to root of the groove on the weld bead geometry and welding defects was studied. Additionally, high-speed photography was introduced in the experiment as an efficient method to record the total process of welding, especially the transfer of molten drop. The study found that when the beam was focused on the center of the groove, the filler wire could be melted successfully even though it would tremble slightly during welding process. The optimized distance from the intersection of the beam and wire to groove root was 3 mm. Later, butt weld joints of 70-mm-thick steel plate without lack of fusion can be obtained under optimized welding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reisgen U, Schleser M, Mokrov O, Ahmed E (2012) Optimization of laser welding of DP/TRIP steel sheets using statistical approach. Opt Laser Technol 44(1):255–262

    Article  Google Scholar 

  2. Elmesalamy A, Francis JA, Li L (2014) A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel. Int J Press Vessel Pip 113:49–59

    Article  Google Scholar 

  3. Dittrich D, Schedewy R, Brenner B, Standfuß J (2013) Laser multi-pass narrow gap welding of hot crack sensitive thick aluminum plates. Phys Procedia 41:225–233

    Article  Google Scholar 

  4. Guo W, Crowther D, Francis JA, Thompson A, Li L (2016) Process-parameter interactions in ultra-narrow gap laser welding of high strength steels. Int J Adv Manuf Technol 84(9–12):2547–2566

    Article  Google Scholar 

  5. Shi H, Zhang K, Xu Z, Huang T, Fan L, Bao W (2014) Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire. Int J Adv Manuf Technol 75(1–4):279–291

    Article  Google Scholar 

  6. Li R, Yue J, Shao X, Wang C, Yan F, Hu X (2015) A study of thick plate ultra-narrow-gap multi-pass multi-layer laser welding technology combined with laser cleaning. Int J Adv Manuf Technol 81:113–127

    Article  Google Scholar 

  7. Heralić A, Christiansson AK, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng 50(9):1230–1241

    Article  Google Scholar 

  8. Phaoniam R, Shinozaki K, Yamamoto M, Kadoi K, Tsuchiya S, Nishijima A (2013) Development of a highly efficient hot-wire laser hybrid process for narrow-gap welding—welding phenomena and their adequate conditions. Welding in the World 57(5):607–613

    Article  Google Scholar 

  9. Jokinen T, Vihervä T, Riikonen H, Kujanpää V (2000) Welding of ship structural steel A36 using a Nd:YAG laser and gas-metal arc welding. Journal of Laser Applications 12(5):185–188

    Article  Google Scholar 

  10. Patschger A, Sahib C, Bergmann JP, Bastick A (2011) Process optimization through adaptation of shielding gas selection and feeding during laser beam welding. Phys Procedia 12:46–55

    Article  Google Scholar 

  11. Bannour S, Abderrazak K, Mhiri H, Le Palec G (2012) Effects of temperature-dependent material properties and shielding gas on molten pool formation during continuous laser welding of AZ91 magnesium alloy. Opt Laser Technol 44(8):2459–2468

    Article  Google Scholar 

  12. Li S, Chen G, Zhou C (2015) Effects of welding parameters on weld geometry during high-power laser welding of thick plate. Int J Adv Manuf Technol 79:177–182

    Article  Google Scholar 

  13. Zhang W, Hua X, Liao W, Li F, Wang M (2014) Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures. Opt Laser Technol 56(1):158–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Ma, S., Huang, J. et al. Narrow-gap laser welding using filler wire of thick steel plates. Int J Adv Manuf Technol 93, 2955–2962 (2017). https://doi.org/10.1007/s00170-017-0470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0470-3

Keywords

Navigation