Skip to main content
Log in

Microscopic cracking simulation of nanocomposite ceramic tool materials under the consideration of residual stress

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, the numerical simulation of crack propagation in microstructures of Al2O3/SiCn nanocomposite ceramic tool materials is carried out by means of a micromechanical model based on the Voronoi tessellation and the cohesive element theory in order to explore the relationship between microstructure morphologies and mechanical properties. The residual stress initiated due to the mismatch of thermal expansion coefficients and elastic modulus between matrix grains and nanoparticles is considered in the simulation. The effects of microstructure types and nanoparticle volume content on the residual stress field and the fracture behavior are analyzed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu CH, Huang CZ, Ai X (2007) Cutting behavior and related cracks in wear and fracture of ceramic tool materials. Int J Adv Manuf Tech 32:1083–1089

    Article  Google Scholar 

  2. Song JP, Huang CZ, Lv M, Zou B, Liu HL, Wang J (2014) Cutting performance and failure mechanisms of TiB2-based ceramic cutting tools in machining hardened Cr12MoV mold steel. Int J Adv Manuf Tech 70:495–500

    Article  Google Scholar 

  3. Gong JH (2001) Fracture mechanics of ceramic material. Press of Tsinghua University, Beijing

    Google Scholar 

  4. Karch J, Birringer R, Gleiter H (1987) Ceramics ductile at low temperature. Nature 330:556–558

    Article  Google Scholar 

  5. Nakahira A, Niihara K, Hirai T (1986) Microstructure and mechanical properties of Al2O3-SiC composites. J Ceram Soc Jpn 94(8):767

    Google Scholar 

  6. Zhai J, Tomar V, Zhou M (2004) Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol 126(2):179–191

    Article  Google Scholar 

  7. Ren, XD (2010) Multi-scale based stochastic damage constitutive theory for concrete. PhD Thesis Shanghai: University of Tongji

  8. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  9. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  10. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  11. Lin, G (1998) Numerical investigation of crack growth behaviour using a cohesive zone model. PhD Thesis Geesthacht: University of Hamburg-Harburg

  12. Lin G, Cornec A, Schwalbe KH (1998) Three-dimensional finite element simulation of crack extension in aluminium alloy 2024-FC. Fatigue Fract Eng M 21(10):1159–1173

    Article  Google Scholar 

  13. Rahul-Kumar P, Jagota A, Bennison SJ, Saigal S, Muralidhar S (1999) Polymer interfacial fracture simulations using cohesive elements. Acta Mater 47(15):4161–4169

    Article  Google Scholar 

  14. Rahul-Kumar P, Jagota A, Bennison SJ, Saigal S (2000) Interfacial failures in a compressive shear strength test of glass/polymer laminates. Int J Solids Struct 37(48–50):7281–7305

    Article  MATH  Google Scholar 

  15. Tomar V (2008) Analyses of the role of the second phase SiC particles in microstructure dependent fracture resistance variation of SiC-Si3N4 nanocomposites. Model Simul Mater Sc 16(3):35001

    Article  Google Scholar 

  16. Jie F, Chen P, Ni J (2013) Prediction of grinding force in microgrinding of ceramic materials by cohesive zone-based finite element method. Int J Adv Manuf Tech 68:1039–1053

    Article  Google Scholar 

  17. Cheng, HM (2011) Multi-scale simulation study on nanocomposite ceramic tool materials. PhD Thesis Jinan: Shandong University

  18. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater 35(3):333–364

    Article  Google Scholar 

  19. Ghosh S, Liu YS (1995) Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials. Int J Numer Meth Eng 38(8):1361–1398

    Article  MATH  Google Scholar 

  20. Liu Y, Kageyama Y, Murakami S (1998) Creep fracture modeling by use of continuum damage variable based on Voronoi simulation of grain boundary cavity. Int J Mech Sci 40(2):147–158

    Article  MATH  Google Scholar 

  21. Bolander JE, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61(5–6):569–591

    Article  Google Scholar 

  22. Zhou, TT (2012) Simulation study on nano-scale interfacial behavior and micro-scale fracture behavior of ceramic tool materials. PhD Thesis Jinan: Shandong University

  23. Zhou TT, Huang CZ (2015) Simulation of crack propagation in single phase ceramic tool materials. Comp Mater Sci 104:177–184

    Article  Google Scholar 

  24. Alfred C, Ingo S, Karl-Heinz S (2003) On the practical application of the cohesive model. Eng Fract Mech 70(14):1963–1987

    Article  Google Scholar 

  25. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397

    Article  MATH  Google Scholar 

  26. Tvergaard V, Hutchinson JW (1994) Effect of T-stress on mode I crack growth resistance in a ductile solid. Int J Solids Struct 31:823–833

    Article  MATH  Google Scholar 

  27. Tomar V, Zhai J, Zhou M (2004) Bounds for element size in a variable stiffness cohesive finite element model. Int J Numer Meth Eng 61:1894–1920

    Article  MATH  Google Scholar 

  28. Levin I, Kaplan WD, Brandon D, Wieder T (1994) Residual stresses in alumina/SiC nanocomposites. Acta Metal Mater 42(4):1147–1154

    Article  Google Scholar 

  29. Todd R, Bourke M, Borsa C, Brook R (1997) Neutron diffraction measurements of residual stresses in alumina/SiC nanocomposites. Acta Mater 45(4):1791–1800

    Article  Google Scholar 

  30. Evans AG, Faber KT (1981) Toughening of ceramics by circumferential microcracking. J Am Ceram Soc 64(7):394–398

    Article  Google Scholar 

  31. Liu, HL (2005) Study on the fabrication and cutting performance of ceramic tool materials based on multi-phase and multi-scale nanocomposite. PhD Thesis Jinan: Shandong University

  32. Hou YY, Li L, Zhang JX (1996) Study on the microstructure and the toughening mechanism in Al2O3/SiCnano nanocomposites. J Electron Microsc 17(2):156–161

    Google Scholar 

  33. Yin ZB, Yuan JT, Wang ZH, Hu HP, Cheng Y, Hu XQ (2016) Preparation and properties of an Al2O3/Ti(C,N) micro-nano-composite ceramic tool material by microwave sintering. Ceram Int 42:4099–4106

    Article  Google Scholar 

  34. Ohji T, Hirano T, Nakahira A, Niihara K (1996) Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites. J Am Ceram Soc 79(1):33–45

    Article  Google Scholar 

  35. Zhao H, Jin ZZ (1996) The analysis of residual stress and toughening mechanism for particle-reinforced composite ceramic material. J Chin Ceram Soc 24(5):491–497

    Google Scholar 

  36. Niihara K, Nakahira A (1991) Strengthening and toughening mechanisms in nanocomposite ceramics. Ann Chim Fr 16(4):479–486

    Google Scholar 

  37. Levin I, Kaplan WD, Brandon DG, Layyous AA (1995) Effect of SiC submicrometer particle size and content on fracture toughness of alumina–SiC "nanocomposites". J Am Ceram Soc 78(1):254–256

    Article  Google Scholar 

  38. Zavattieri PD, Espinosa HD (2001) Grain level analysis of crack initiation and propagation in brittle materials. Acta Mater 49(20):4291–4311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Yi, M. Microscopic cracking simulation of nanocomposite ceramic tool materials under the consideration of residual stress. Int J Adv Manuf Technol 94, 3485–3502 (2018). https://doi.org/10.1007/s00170-016-9663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9663-4

Keywords

Navigation