Skip to main content
Log in

A reconstructed variable regression method for thermal error modeling of machine tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For the thermal error model of computer numerical control (CNC) machine tools based on empirical modeling method, selecting the appropriate temperature-sensitive points is very important. Owing to the existence of multi-collinearity among temperature variables, the accuracy and robustness of the error model are degraded. Therefore, a reconstructed variable regression (RVR) algorithm is presented firstly in this paper. The reconstructed variable is derived from representative temperature points which are selected from the raw temperature data through fuzzy C means (FCM) clustering method. Then, the reconstructed variable is utilized to build the thermal error model based on regression analysis. Meanwhile, a criterion is proposed to find out the optimal cluster result from the whole results of clustering. RVR algorithm was validated through the thermal error experiments of positioning error on a 3-axis machine tool. The number of temperature measuring points could be reduced from 9 to 2. The results of experiments showed that the fitting accuracy of RVR model could reach 92 % and the prediction accuracy could reach about 90 %. It is verified that the RVR model is of high prediction accuracy and strong robustness which is a great choice for thermal error modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675. doi:10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  2. Bryan J (1990) International status of thermal error research. CIRP Ann Manuf Technol 39(2):645–656. doi:10.1016/S0007-8506(07)63001-7

    Article  MathSciNet  Google Scholar 

  3. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791. doi:10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  4. Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38. doi:10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  5. Lei WT, Hsu YY (2003) Accuracy enhancement of five-axis CNC machines through real-time error compensation. Int J Mach Tools Manuf 43(9):871–877. doi:10.1016/s0890-6955(03)00089-0

    Article  Google Scholar 

  6. Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527. doi:10.1007/s00170-013-4939-4

    Article  Google Scholar 

  7. Ma C, Mei XS, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489. doi:10.1007/s00170-015-6821-z

    Article  Google Scholar 

  8. Yang J, Zhang DS, Mei XS, Zhao L, Ma C, Shi H (2014) Thermal error simulation and compensation in a jig-boring machine equipped with a dual-drive servo feed system. Proc IMechE, Part B: J Engineering Manufacture 229(1 Suppl):43–63. doi:10.1177/0954405414555592

    Article  Google Scholar 

  9. Wu CW, Tang CH, Chang CF, Shiao YS (2011) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689. doi:10.1007/s00170-011-3533-x

    Google Scholar 

  10. Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2015) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Adv Manuf Technol 83(5–8):995–1002. doi:10.1007/s00170-015-7660-7

    Google Scholar 

  11. Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120. doi:10.1007/s001700200132

    Article  Google Scholar 

  12. Yang J, Zhang DS, Feng B, Mei XS, Hu ZB (2014) Thermal-induced errors prediction and compensation for a coordinate boring machine based on time series analysis. Math Probl Eng 2014:1–13. doi:10.1155/2014/784218

    Google Scholar 

  13. Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50:667–675. doi:10.1007/s00170-010-2520-y

    Article  Google Scholar 

  14. Yan JY, Yang JG (2008) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132. doi:10.1007/s00170-008-1791-z

    Google Scholar 

  15. Han J, Wang LP, Cheng NB, Wang HT (2011) Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimal-resource allocating networks. Int J Adv Manuf Technol 60(5–8):463–472. doi:10.1007/s00170-011-3619-5

    Google Scholar 

  16. Zhang T, Ye WH, Liang RJ, Lou PH, Yang XL (2013) Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold. Chin J Mech Eng 26(1):158–165. doi:10.3901/cjme.2013.01.158

    Article  Google Scholar 

  17. Han J, Wang LP, Wang HT, Cheng NB (2011) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212. doi:10.1007/s00170-011-3796-2

    Google Scholar 

  18. Wang HT, Wang LP, Li TM, Han J (2013) Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69(1–4):121–126. doi:10.1007/s00170-013-4998-6

    Article  Google Scholar 

  19. Miao EM, Gong YY, Dang LC, Miao JC (2014) Temperature-sensitive point selection of thermal error model of CNC machining center. Int J Adv Manuf Technol 74(5–8):681–691. doi:10.1007/s00170-014-6009-y

    Google Scholar 

  20. Xiang ST, Lu HX, Yang JG (2014) Thermal error prediction method for spindles in machine tools based on a hybrid model. Proc IMechE, Part B: J Engineering Manufacture 229(1):130–140. doi:10.1177/0954405414525383

    Article  Google Scholar 

  21. Miao EM, Liu Y, Liu H, Gao ZH, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97:50–59. doi:10.1016/j.ijmachtools.2015.07.004

    Article  Google Scholar 

  22. Li ZH, Fan KG, Yang JG, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5–8):773–782. doi:10.1007/s00170-014-5865-9

    Article  Google Scholar 

  23. Jiang H, Fan KG, Yang JG (2014) An improved method for thermally induced positioning errors measurement, modeling, and compensation. Int J Adv Manuf Technol 75(9–12):1279–1289. doi:10.1007/s00170-014-6193-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, J. & Ji, S. A reconstructed variable regression method for thermal error modeling of machine tools. Int J Adv Manuf Technol 90, 3673–3684 (2017). https://doi.org/10.1007/s00170-016-9648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9648-3

Keywords

Navigation