Skip to main content
Log in

Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fixture locating layout has a direct and influential impact on the sheet metal mechanical behavior and dimensional quality during the manufacturing process. The N-2-1 locating principle is adopted to design the fixture locating layout for the sheet metal part to determine the spatial location and restrain the excessive deformation. However, efficient optimal design of fixture layout is not an easy-to-implement and trivial task. The state-of-the-art evolutionary optimization of fixture layout aiming for workpiece deformation control often involves hundreds or even thousands of calls of finite element analysis and therefore is faced with uncomfortable and challenging computation cost and burden. In order to reduce the computational cost and improve the optimization efficiency, a new approach for optimum sheet metal fixture locating layout based on the N-2-1 principle is proposed in this paper. The training and test data sets are generated by running only a few times of finite element analysis on the design sites standing for different fixture locating layouts selected through Latin hypercube sampling. The kriging surrogate model is built based on the training sample set to approximate the implicit function relationship between the fixture locating layout and the concerned sheet metal deformation and meanwhile is compared with back propagation neural network in terms of prediction accuracy by the test sample set. The cuckoo search algorithm is applied to the kriging model to find the optimal fixture locating layout. Flat and curved sheet metal cases based on the “4-2-1” locating scheme are conducted, and the results indicate that the proposed approach is effective and efficient in the design and optimization of the sheet metal fixture locating layout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saadat M, Cretin C (2002) Dimensional variations during Airbus wing assembly. Assem Autom 22(3):270–276. doi:10.1108/01445150210436482

    Article  Google Scholar 

  2. Hu SJ, Camelio J (2006) Modeling and control of compliant assembly systems. Cirp Annals-Manuf Technol 55(1):19–22. doi:10.1016/s0007-8506(07)60357-6

    Article  Google Scholar 

  3. Cai W, Hu SJ, Yuan JX (1996) Deformable sheet metal fixturing: principles, algorithms, and simulations. J Manuf Sci Eng-Trans Asme 118(3):318–324. doi:10.1115/1.2831031

    Article  Google Scholar 

  4. Asada H, Andre B (1985) Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures. Robot Autom, IEEE J 1(2):86–94

    Article  Google Scholar 

  5. Amaral N, Rencis JJ, Rong YM (2005) Development of a finite element analysis tool for fixture design integrity verification and optimisation. Int J Adv Manuf Technol 25(5–6):409–419. doi:10.1007/s00170-003-1796-6

    Article  Google Scholar 

  6. Siebenaler SP, Melkote SN (2006) Prediction of workpiece deformation in a fixture system using the finite element method. Int J Mach Tools Manuf 46(1):51–58. doi:10.1016/j.ijmachtools.2005.04.007

    Article  Google Scholar 

  7. Ratchev S, Phuah K, Liu S (2007) FEA-based methodology for the prediction of part-fixture behaviour and its applications. J Mater Process Technol 191(1–3):260–264. doi:10.1016/j.jmatprotec.2007.03.020

    Article  Google Scholar 

  8. Krishnakumar K, Melkote SN (2000) Machining fixture layout optimization using the genetic algorithm. Int J Mach Tools Manuf 40(4):579–598. doi:10.1016/s0890-6955(99)00072-3

    Article  Google Scholar 

  9. Li B, Shiu BW (2001) Principle and simulation of fixture configuration design for sheet metal assembly with laser welding. Part 2: optimal configuration design with the genetic algorithm. Int J Adv Manuf Technol 18(4):276–284. doi:10.1007/s001700170068

    Article  Google Scholar 

  10. Kulankara K, Satyanarayana S, Melkote SN (2002) Iterative fixture layout and clamping force optimization using the genetic algorithm. J Manuf Sci Eng-Trans Asme 124(1):119–125. doi:10.1115/1.1414127

    Article  Google Scholar 

  11. Liao YG (2003) A genetic algorithm-based fixture locating positions and clamping schemes optimization. Proc IME Part B-J Eng Manuf 217(8):1075–1083

    Article  Google Scholar 

  12. Kaya N (2006) Machining fixture locating and clamping position optimization using genetic algorithms. Comput Ind 57(2):112–120. doi:10.1016/j.compind.2005.05.001

    Article  Google Scholar 

  13. Padmanaban KP, Arulshri KP, Prabhakaran G (2009) Machining fixture layout design using ant colony algorithm based continuous optimization method. Int J Adv Manuf Technol 45(9–10):922–934. doi:10.1007/s00170-009-2035-6

    Article  Google Scholar 

  14. Dou JP, Wang XS, Wang L (2012) Machining fixture layout optimisation under dynamic conditions based on evolutionary techniques. Int J Prod Res 50(15):4294–4315. doi:10.1080/00207543.2011.618470

    Article  Google Scholar 

  15. Xiong L, Molfino R, Zoppi M (2013) Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system. Int J Adv Manuf Technol 66(9–12):1305–1313. doi:10.1007/s00170-012-4408-5

    Article  Google Scholar 

  16. Kumar KS, Paulraj G (2014) Analysis and optimization of fixture under dynamic machining condition with chip removal effect. J Intell Manuf 25(1):85–98. doi:10.1007/s10845-012-0677-y

    Article  Google Scholar 

  17. Xing YF, Hu M, Zeng H, Wang YS (2015) Fixture layout optimisation based on a non-domination sorting social radiation algorithm for auto-body parts. Int J Prod Res 53(11):3475–3490. doi:10.1080/00207543.2014.1003662

    Article  Google Scholar 

  18. Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27(5):302–313. doi:10.1007/s00158-004-0389-9

    Article  Google Scholar 

  19. Li B, Shiu BW, Lau KJ (2003) Robust fixture configuration design for sheet metal assembly with laser welding. J Manuf Sci Eng-Trans Asme 125(1):120–127. doi:10.1115/1.1536172

    Article  Google Scholar 

  20. Hamedi M (2005) Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm. Artif Intell Rev 23(3):295–311. doi:10.1007/s10462-004-7187-z

    Article  Google Scholar 

  21. Li B, Hu Y, Tang H, Yu HJ, Hu H (2008) A comparative study on quality design of fixture planning for sheet metal assembly. J Eng Des 19(1):1–13. doi:10.1080/09544820601058634

    Article  Google Scholar 

  22. Vasundara M, Padmanaban KP, Sabareeswaran M, RajGanesh M (2012) Machining fixture layout design for milling operation using FEA, ANN and RSM. In: Rajesh R, Ganesh K, Koh SCL (eds) International conference on modelling optimization and computing, vol 38. Procedia engineering. Elsevier Science Bv, Amsterdam, pp. 1693–1703. doi:10.1016/j.proeng.2012.06.206

    Google Scholar 

  23. Selvakumar S, Arulshri KP, Padmanaban KP, Sasikumar KSK (2013) Design and optimization of machining fixture layout using ANN and DOE. Int J Adv Manuf Technol 65(9–12):1573–1586. doi:10.1007/s00170-012-4281-2

    Article  Google Scholar 

  24. Sundararaman KA, Guharaja S, Padmanaban KP, Sabareeswaran M (2014) Design and optimization of machining fixture layout for end-milling operation. Int J Adv Manuf Technol 73(5–8):669–679. doi:10.1007/s00170-014-5848-x

    Article  Google Scholar 

  25. Lu C, Zhao HW (2015) Fixture layout optimization for deformable sheet metal workpiece. Int J Adv Manuf Technol 78(1–4):85–98. doi:10.1007/s00170-014-6647-0

    Article  Google Scholar 

  26. Rex FMT, Ravindran D (2015) An integrated approach for optimal fixture layout design. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture: 0954405415590991

  27. Qin G, Wang Z, Rong Y, Li Q (2015) A unified approach to multi-fixturing layout planning for thin-walled workpiece. Procthe IME Part B: J Eng Manuf: 0954405415585240

  28. Sundararaman K, Padmanaban K, Sabareeswaran M (2015) Optimization of machining fixture layout using integrated response surface methodology and evolutionary techniques. Proc IME Part C: J Mech Eng Sci: 0954406215592920

  29. Haykin SS, Haykin SS, Haykin SS, Haykin SS (2009) Neural networks and learning machines, vol 3. Pearson Education Upper Saddle River

  30. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci: 409–423

  31. Nielsen HB, Lophaven SN, Sondergaard J (2002) DACE, a MATLAB kriging toolbox. Informatics and mathematical modelling Lyngby–Denmark: Technical University of Denmark, DTU

  32. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Abraham A, Herrera F, Carvalho A, Pai V (eds) 2009 World Congress on nature & biologically inspired computing. World Congress on Nature and Biologically Inspired Computing. Ieee, New York, pp. 210–214. doi:10.1109/nabic.2009.5393690

    Chapter  Google Scholar 

  33. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optimisation 1(4):330–343

    Article  MATH  Google Scholar 

  34. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174. doi:10.1007/s00521-013-1367-1

    Article  Google Scholar 

  35. Durgun I, Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Mater Test 54(3):185–188

    Article  Google Scholar 

  36. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61. doi:10.1007/s00170-012-4013-7

    Article  Google Scholar 

  37. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61. doi:10.2307/1271432

    Article  MATH  Google Scholar 

  38. Simulia DS (2012) Abaqus 6.12 documentation. Providence, Rhode Island, US

  39. Hudson B, Hagan M, Demuth H (2012) Neural network toolbox for use with MATLAB. User’s Guide, the Math works

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wang, Z., Yang, Y. et al. Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm. Int J Adv Manuf Technol 91, 327–340 (2017). https://doi.org/10.1007/s00170-016-9638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9638-5

Keywords

Navigation