Skip to main content
Log in

Milling stability prediction for flexible workpiece using dynamics of coupled machining system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An efficient machining is limited by the chatter of machining system including spindle and support, which would cause poor surface quality. This paper proposed an improved stability prediction method based on the dynamics of machine tool. Dynamics of the support are considered into the stability prediction of machining process. The spindle was modeled by the receptance coupling substructure analysis method to predict the dynamics at the tool point. The mathematical model of the closed manufacturing system (machine tool, spindle, holder, and tool) was given, as well as the details of joint contacts. The model was used to obtain the system characteristics, and the FRFs of the tool point were obtained from the model in frequency domain. Moreover, the stability limitation for machining system were developed to create the stability lobe diagram with the FRFs of both the spindle and support. Experimental results showed that the depths of improved stability lobes were smaller than those of the original ones, and the improved lobes were more accurate for the stability predictions. The machined surface quality showed that the stable machining system was beneficial to produce good surface. This improved method is helpful for the stability calculation and machining parameter selection especially when milling a thin-walled workpiece or a weak clamping fixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht P (1960) New developments in the theory of the metal-cutting process: part I. The ploughing process in metal cutting. J Eng Ind 82(4):348–357. doi:10.1115/1.3664242

    Article  Google Scholar 

  2. Altintas Y, Ko JH (2006) Chatter stability of plunge milling. CIRP Ann-Manuf Techn 55(1):361–364. doi:10.1016/S0007-8506(07)60435-1

    Article  Google Scholar 

  3. Nakayama K, Tamura K (1968) Size effect in metal-cutting force. J Eng Ind 90(1):119–126

    Article  Google Scholar 

  4. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann-Manuf Techn 44(1):357–362. doi:10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  5. Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J C-Mech Sy 44(3):717–723. doi:10.1299/jsmec.44.717

    Article  MathSciNet  Google Scholar 

  6. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Eng Ind 113(2):160–168. doi:10.1115/1.2899673

    Article  Google Scholar 

  7. Budak E, Altintas Y, Armarego EJ (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci E-T ASME 118(2):216–224. doi:10.1115/1.2831014

    Article  Google Scholar 

  8. Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tool Manu 36(9):1059–1072. doi:10.1016/0890-6955(95)00081-X

    Article  Google Scholar 

  9. Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann-Manuf Techn 57(1):371–374. doi:10.1016/j.cirp.2008.03.048

    Article  Google Scholar 

  10. Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Maunf Sci Technol 1(1):35–44. doi:10.1016/j.cirpj.2008.06.003

    Article  Google Scholar 

  11. Krüger M, Denkena B (2013) Model-based identification of tool runout in end milling and estimation of surface roughness from measured cutting forces. Int J Adv Manuf Technol 65(5–8):1067–1080. doi:10.1007/s00170-012-4240-y

    Article  Google Scholar 

  12. Sutherland JW, DeVor RE (1986) An improved method for cutting force and surface error prediction in flexible end milling systems. J Eng Ind 108(4):269–279

    Article  Google Scholar 

  13. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann-Manuf Techn 59(2):781–802. doi:10.1016/j.cirp.2010.05.002

    Article  Google Scholar 

  14. Kumar UV, Schmitz TL (2012) Spindle dynamics identification for receptance coupling substructure analysis. Precis Eng 36(3):435–443. doi:10.1016/j.precisioneng.2012.01.007

    Article  Google Scholar 

  15. Zheng Y, Hou Z, Rong Y (2008) The study of fixture stiffness—part II: contact stiffness identification between fixture components. Int J Adv Manuf Technol 38(1–2):19–31. doi:10.1007/s00170-007-1077-x

    Article  Google Scholar 

  16. Movahhedy MR, Gerami JM (2006) Prediction of spindle dynamics in milling by sub-structure coupling. Int J Mach Tool Manu 46(3–4):243–251. doi:10.1016/j.ijmachtools.2005.05.026

    Article  Google Scholar 

  17. Ertürk A, Özgüven HN, Budak E (2006) Analytical modeling of spindle–tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. Int J Mach Tool Manu 46(15):1901–1912. doi:10.1016/j.ijmachtools.2006.01.032

    Article  Google Scholar 

  18. Schmitz TL, Duncan GS (2005) Three-component receptance coupling substructure analysis for tool point dynamics prediction. J Manuf Sci E-T ASME 127(4):781–790. doi:10.1115/1.2039102

    Article  Google Scholar 

  19. Schmitz TL, Davies MA, Kennedy MD (2001) Tool point frequency response prediction for high-speed machining by RCSA. J Manuf Sci E-T ASME 123(4):700–707. doi:10.1115/1.1392994

    Article  Google Scholar 

  20. Filiz S, Cheng CH, Powellb KB, Schmitz TL, Ozdoganlar OB (2009) An improved tool–holder model for RCSA tool-point frequency response prediction. Precis Eng 33(1):26–36. doi:10.1016/j.precisioneng.2008.03.003

    Article  Google Scholar 

  21. Ahmadian H, Nourmohammadi M (2010) Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces. Int J Mach Tool Manu 50(11):998–1005. doi:10.1016/j.ijmachtools.2010.07.003

    Article  Google Scholar 

  22. Agapiou JS (2008) Estimating the static stiffness for a spindle-toolholder-tooling system. Mach Sci Technol 12(1):77–99. doi:10.1080/10910340801890938

    Article  Google Scholar 

  23. Ghanati MF, Madoliat R (2012) New continuous dynamic coupling for three component modeling of tool–holder–spindle structure of machine tools with modified effected tool damping. J Manuf Sci E-T ASME 134(2):21015. doi:10.1115/1.4006094

    Article  Google Scholar 

  24. Xu C, Zhang J, Wu Z, Yu D, Feng P (2013) Dynamic modeling and parameters identification of a spindle–holder taper joint. Int J Adv Manuf Technol 67(5–8):1517–1525. doi:10.1007/s00170-012-4586-1

    Article  Google Scholar 

  25. Siebenaler SP, Melkote SN (2006) Prediction of workpiece deformation in a fixture system using the finite element method. Int J Mach Tool Manu 46(1):51–58. doi:10.1016/j.ijmachtools.2005.04.007

    Article  Google Scholar 

  26. Gutowski P, Berczyński S (2006) Identification of the dynamic models of machine tool supporting systems. Part II: an example of application of the method. J Vib Control 12(3):279–295. doi:10.1177/1077546306062774

    Article  MATH  Google Scholar 

  27. Budak E (1994) Mechanics and dynamics of milling thin walled structures. University of British Columbia

  28. Xu C, Zhang J, Feng P, Yu D, Wu Z (2014) Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces. Int J Mach Tool Manu 82-83:21–28. doi:10.1016/j.ijmachtools.2014.03.006

    Article  Google Scholar 

  29. Quinn DD (2012) Modal analysis of jointed structures. J Sound Vib 331(1):81–93. doi:10.1016/j.jsv.2011.08.017

    Article  Google Scholar 

  30. Ahmadian H, Jalali H (2007) Identification of bolted lap joints parameters in assembled structures. Mech Syst Signal Pr 21(2):1041–1050. doi:10.1016/j.ymssp.2005.08.015

    Article  Google Scholar 

  31. Xu C, Zhang J, Yu D, Wu Z, Feng P (2015) Dynamics prediction of spindle system using joint models of spindle tool holder and bearings. Proc Inst Mech Eng C J Mech Eng Sci 229(17):3084–3095. doi:10.1177/0954406215569588

    Article  Google Scholar 

  32. Gao X, Li B, Hong J, Guo J (2016) Stiffness modeling of machine tools based on machining space analysis. Int J Adv Manuf Technol 86(5):2093–2106. doi:10.1007/s00170-015-8336-z

    Google Scholar 

  33. Kolar P, Sulitka M, Janota M (2011) Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. Int J Adv Manuf Technol 54(1–4):11–20. doi:10.1007/s00170-010-2917-7

    Article  Google Scholar 

  34. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press

  35. Özşahin O, Özgüven HN, Budak E (2010) Analysis and compensation of mass loading effect of accelerometers on tool point FRF measurements for chatter stability predictions. Int J Mach Tool Manu 50(6):585–589. doi:10.1016/j.ijmachtools.2010.02.002

    Article  Google Scholar 

  36. Graham E, Mehrpouya M, Nagamune R, Park SS (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29–39. doi:10.1016/j.cirpj.2013.09.002

    Article  Google Scholar 

  37. Faassen R (2007) Chatter prediction and control for high-speed milling. Eindhoven University of Technology, Eindhoven

    Google Scholar 

  38. Salahshoor M, Ahmadian H (2009) Continuous model for analytical prediction of chatter in milling. Int J Mach Tool Manu 49(14):1136–1143. doi:10.1016/j.ijmachtools.2009.07.016

    Article  Google Scholar 

  39. Schmitz TL, Davies MA, Medicus K, Snyder J (2001) Improving high-speed machining material removal rates by rapid dynamic analysis. CIRP Ann-Manuf Techn 50(1):263–268. doi:10.1016/S0007-8506(07)62119-2

    Article  Google Scholar 

  40. Bobbili R, Madhu V, Gogia AK (2013) Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Mater Manuf Process 28(4):364–368. doi:10.1080/10426914.2012.736661

    Article  Google Scholar 

  41. Albertelli P, Cau N, Bianchi G, Monno M (2012) The effects of dynamic interaction between machine tool subsystems on cutting process stability. Int J Adv Manuf Technol 58(9–12):923–932. doi:10.1007/s00170-011-3465-5

    Article  Google Scholar 

  42. Yue J (2006) Creating a stability lobe diagram. Proceedings of the 2006 IJME-INTERTECH Conference

  43. Mane I, Gagnol V, Bouzgarrou BC, Ray P (2008) Stability-based spindle speed control during flexible workpiece high-speed milling. Int J Mach Tool Manu 48(2):184–194. doi:10.1016/j.ijmachtools.2007.08.018

    Article  Google Scholar 

  44. Solis E, Peres CR, Jimenez JE, Alique JR, Monje JC (2004) A new analytical–experimental method for the identification of stability lobes in high-speed milling. Int J Mach Tool Manu 44(15):1591–1597. doi:10.1016/j.ijmachtools.2004.06.011

    Article  Google Scholar 

  45. Devillez A, Dudzinski D (2007) Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers. Mech Syst Signal Pr 21(1):441–456. doi:10.1016/j.ymssp.2005.11.007

    Article  Google Scholar 

  46. Dos Santos RG, Coelho RT (2014) A contribution to improve the accuracy of chatter prediction in machine tools using the stability lobe diagram. J Manuf Sci E-T ASME 136(2):21005. doi:10.1115/1.4025514

    Article  Google Scholar 

  47. Faassen RP, Oosterling JA, Van De Wouw N, Nijmeijer H (2007) An improved tool path model including periodic delay for chatter prediction in milling. J Comput Nonlin Dyn 2(2):167–179. doi:10.1115/1.2447465

    Article  Google Scholar 

  48. Minis I, Yanushevsky R (1993) A new theoretical approach for the prediction of machine tool chatter in milling. J Eng Ind 115(1):1–8. doi:10.1115/1.2901633

    Article  Google Scholar 

  49. Albertelli P, Goletti M, Monno M (2013) A new receptance coupling substructure analysis methodology to improve chatter free cutting conditions prediction. Int J Mach Tool Manu 72:16–24. doi:10.1016/j.ijmachtools.2013.05.003

    Article  Google Scholar 

  50. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann-Manuf Techn 53(2):619–642. doi:10.1016/S0007-8506(07)60032-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfa Feng.

Additional information

Highlights:

A milling stability prediction method was proposed using dynamics of coupled machining system.

Modified stability lobe diagram was verified to be a better match than before from results.

The modified method is helpful when a thin-walled workpiece or weak clamping fixture using.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Feng, P., Zhang, J. et al. Milling stability prediction for flexible workpiece using dynamics of coupled machining system. Int J Adv Manuf Technol 90, 3217–3227 (2017). https://doi.org/10.1007/s00170-016-9599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9599-8

Keywords

Navigation