Skip to main content
Log in

Three-dimensional modeling of the stress evolution in injection molded parts based on a known melt pressure field

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To obtain the initial conditions for ejection analysis of an injection molded part, a numerical simulation of the stress evolution in the material during injection molding is required. This topic, described in the literature only modestly for the full three-dimensional geometry, is addressed here by proposing an approach simple enough to be implemented in a general purpose solid mechanics simulation code. This feature makes it especially suitable with respect to the analysis of ejection, where custom code development might present hindering amount of additional work. As temperature and pressure field evolutions are obtainable through a computational fluid dynamics analysis, they are taken as input data in the stress analysis. The novelty of the approach is in the treatment of the melt region, where explicit tracking of the melt-solid interface is substituted by imposing the known pressure field in the melt region. The validity of the approach is experimentally tested by analyzing shrinkage and mass of moldings, as well as partial cavity pressure evolution at different packing pressure settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy P (2008) Practical and scientific aspects of injection molding simulation. Technische Universiteit Eindhoven, Endhoven, The Netherlands. http://www.worldcat.org/title/practical-and-scientific-aspects-of-injection-molding-simulation/oclc/723286754

  2. Wang H, Kabanemi KK, Salloum G (2000) Numerical and experimental studies on the ejection of injection-molded plastic products. Polym Eng Sci 40:826–840

    Article  Google Scholar 

  3. Kabanemi KK, Vaillancourt H, Wang H, Salloum G (1998) Residual stresses, shrinkage, and warpage of complex injection molded products: numerical simulation and experimental validation. Polym Eng Sci 38:21–37. doi:10.1002/pen.10162

    Article  Google Scholar 

  4. Pontes AJ, Pouzada AS, Pantani R, Titomanlio G (2005) Ejection force of tubular injection moldings. Part II: a prediction model. Polym Eng Sci 45:325–332. doi:10.1002/pen.20275

    Article  Google Scholar 

  5. Jansen KMB, Titomanlio G (1996) Effect of pressure history on shrinkage and residual stresses—injection molding with constrained shrinkage. Polym Eng Sci 36:2029–2040

    Article  Google Scholar 

  6. Bataineh OM, Klamecki BE (2005) Prediction of local part-mold and ejection force in injection molding. J Manuf Sci Eng-Trans Asme 127:598–604

    Article  Google Scholar 

  7. Marson S, Attia UM, Lucchetta G et al (2011) Flatness optimization of micro-injection moulded parts: the case of a PMMA microfluidic component. J Micromechanics Microengineering 21:115024

    Article  Google Scholar 

  8. Titomanlio G, Jansen KMB (1996) In-mold shrinkage and stress prediction in injection molding. Polym Eng Sci 36:2041–2049

    Article  Google Scholar 

  9. Bushko WC, Stokes VK (1996) Solidification of thermoviscoelastic melts. Part 4: effects of boundary conditions on shrinkage and residual stresses. Polym Eng Sci 36:658–675. doi:10.1002/pen.10454

    Article  Google Scholar 

  10. Baaijens FPT (1991) Calculation of residual stresses in injection molded products. Rheol Acta 30:284–299. doi:10.1007/BF00366642

    Article  Google Scholar 

  11. Chang R-Y, Chiou S-Y (1995) A unified K-BKZ model for residual stress analysis of injection molded three-dimensional thin shapes. Polym Eng Sci 35:1733–1747

    Article  Google Scholar 

  12. Kamal MR, Lai-Fook RA, Hernandez-Aguilar JR (2002) Residual thermal stresses in injection moldings of thermoplastics: a theoretical and experimental study. Polym Eng Sci 42:1098–1114

    Article  Google Scholar 

  13. Kang SY, Kim SK, Lee WI (2008) Penalty formulation for postfilling analysis during injection molding. Int J Numer Methods Fluids 57:139–155. doi:10.1002/fld.1630

    Article  MATH  Google Scholar 

  14. Li X, Ouyang J, Li Q, Ren J (2012) Simulations of a full three-dimensional packing process and flow-induced stresses in injection molding. J Appl Polym Sci 126:1532–1545. doi:10.1002/app.36648

    Article  Google Scholar 

  15. Spina R, Spekowius M, Dahlmann R, Hopmann C (2014) Analysis of polymer crystallization and residual stresses in injection molded parts. Int J Precis Eng Manuf 15:89–96. doi:10.1007/s12541-013-0309-2

    Article  Google Scholar 

  16. Zheng R, Tanner RI, Fan X-J (2011) Injection molding. Springer Berlin Heidelberg, Berlin, Heidelberg

  17. Jansen KMB, Van Dijk DJ, Husselman MH (1998) Effect of processing conditions on shrinkage in injection molding. Polym Eng Sci 38:838–846

    Article  Google Scholar 

  18. Jansen KMB, van Dijk DJ, Burgers EV (1998) Experimental validation of shrinkage predictions for injection molded products. Int Polym Process 13:99–104. doi:10.3139/217.980099

    Article  Google Scholar 

  19. Vietri U, Sorrentino A, Speranza V, Pantani R (2011) Improving the predictions of injection molding simulation software. Polym Eng Sci 51:2542–2551. doi:10.1002/pen.22035

    Article  Google Scholar 

  20. Zoetelief WF, Douven LFA, Housz AJI (1996) Residual thermal stresses in injection molded products. Polym Eng Sci 36:1886–1896. doi:10.1002/pen.10585

    Article  Google Scholar 

  21. Aho J, Syrjälä S (2008) On the measurement and modeling of viscosity of polymers at low temperatures. Polym Test 27:35–40. doi:10.1016/j.polymertesting.2007.08.004

    Article  Google Scholar 

  22. Pantani R, Speranza V, Titomanlio G (2001) Relevance of mold-induced thermal boundary conditions and cavity deformation in the simulation of injection molding. Polym Eng Sci 41:2022–2035

    Article  Google Scholar 

  23. Pouzada AS, Ferreira EC, Pontes AJ (2006) Friction properties of moulding thermoplastics. Polym Test 25:1017–1023. doi:10.1016/j.polymertesting.2006.06.009

    Article  Google Scholar 

  24. Dawson A, Rides M, Nottay J (2006) The effect of pressure on the thermal conductivity of polymer melts. Polym Test 25:268–275. doi:10.1016/j.polymertesting.2005.10.001

    Article  Google Scholar 

  25. CJ Y, Sunderland JE, Poli C (1990) Thermal contact resistance in injection molding. Polym Eng Sci 30:1599–1606. doi:10.1002/pen.760302408

    Article  Google Scholar 

  26. Delaunay D, Le Bot P, Fulchiron R et al (2000) Nature of contact between polymer and mold in injection molding. Part I: influence of a non-perfect thermal contact. Polym Eng Sci 40:1682–1691. doi:10.1002/pen.11300

    Article  Google Scholar 

  27. Jansen KMB, Pantani R, Titomanlio G (1998) As-molded shrinkage measurements on polystyrene injection molded products. Polym Eng Sci 38:254–264. doi:10.1002/pen.10186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Mole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebelj, K., Mole, N. & Štok, B. Three-dimensional modeling of the stress evolution in injection molded parts based on a known melt pressure field. Int J Adv Manuf Technol 90, 2363–2376 (2017). https://doi.org/10.1007/s00170-016-9533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9533-0

Keywords

Navigation