Skip to main content
Log in

Hybrid analytic-experimental modeling for machine tool structural dynamics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The usage of virtual prototype technology to study the static and dynamic properties of machine tools could shorten the life cycle time of machine design as there is no need for a physical prototype. The base of this technology is to establish the virtual model accurately and conveniently. This study presents a hybrid analytic-experimental method for the dynamic modeling of machine tools. In the proposed method, the structural components of machine tools are modeled by an analytic method (finite element method), and the machine elements are represented by models that originate from experimental data. The full dynamic model of the machine tool structure is obtained by assembling the analytic models of the structural components and experimental models of the machine elements. The bolted joint is taken as an example to illustrate the experimental model for the machine elements and the assembly of the analytic and experimental models. The convenience and accuracy of the proposed hybrid analytic-experimental modeling method are illustrated by two engineering examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  2. Vesely J, Sulitka M (2008) Machine tool virtual model. In International Congress Matar Praha, 115–122

  3. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607

    Article  Google Scholar 

  4. Brecher C, Witt S (2009) Interactive analysis of the structural mechanic behaviour of machine tools. Prod Eng 3(4-5):475–481

    Article  Google Scholar 

  5. Lee RS, Lin YH (2010) Development of universal environment for constructing 5-axis virtual machine tool based on modified D–H notation and OpenGL. Robot Comput Integr Manuf 26(3):253–262

    Article  MathSciNet  Google Scholar 

  6. Kadir AA, Xu X, Hämmerle E (2011) Virtual machine tools and virtual machining—a technological review. Robot Comput Integr Manuf 27(3):494–508

    Article  Google Scholar 

  7. Ding WZ, Huang XD, Wang ML, Zhu SQ (2013) An approach to evaluate the effects of nonlinear traveling joints on dynamic behavior of large machine tools. Int J Adv Manuf Technol 68(9):2025–2032

    Article  Google Scholar 

  8. Zatarain M, Lejardi E, Egana F, Bueno R (1998) Modular synthesis of machine tools. CIRP Ann Manuf Technol 47(1):333–336

    Article  Google Scholar 

  9. Tlusty J, Ziegert JC, Ridgeway S (2000) A comparison of stiffness characteristics of serial and parallel machine tools. J Manuf Process 2(1):67–76

    Article  Google Scholar 

  10. Huang DT-Y, Lee J-J (2001) On obtaining machine tool stiffness by CAE techniques. Int J Mach Tools Manuf 41(8):1149–1163

    Article  Google Scholar 

  11. Doman D, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49(2):109–116

    Article  Google Scholar 

  12. Bais R, Gupta A, Nakra B, Kundra T (2004) Studies in dynamic design of drilling machine using updated finite element models. Mech Mach Theory 39(12):1307–1320

    Article  MATH  Google Scholar 

  13. Ford DG, Widiyarto MHN, Myers A, Longstaff AP, Fletcher S (2014) Structural analysis and characterisation technique applied to a CNC vertical machining centre. Proc Inst Mech Eng C J Mech Eng Sci 228(13):2357–2371

    Article  Google Scholar 

  14. Liang Y, Chen W, Bai Q, Sun Y, Chen G, Zhang Q, Sun Y (2013) Design and dynamic optimization of an ultraprecision diamond flycutting machine tool for large KDP crystal machining. Int J Adv Manuf Technol 69(1):237–244

    Article  Google Scholar 

  15. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: integrated dynamic modelling, design optimisation and analysis. Int J Adv Manuf Technol 47(9):879–890

    Article  Google Scholar 

  16. Aurich JC, Biermann D, Blum H, Brecher C, Carstensen C, Denkena B, Klocke F, Kröger M, Steinmann P, Weinert K (2009) Modelling and simulation of process: machine interaction in grinding. Prod Eng 3(1):111–120

    Article  Google Scholar 

  17. Fleischer J, Munzinger C, Tröndle M (2008) Simulation and optimization of complete mechanical behaviour of machine tools. Prod Eng 2(1):85–90

    Article  Google Scholar 

  18. Brecher C, Witt S (2006) Simulation of machine process interaction with flexible multi-body simulation. In Proceedings of the 9th CIRP international workshop on modeling of machining operations, Bled, Slovenia, 171–178

  19. Cano T, Chapelle F, Lavest J-M, Ray P (2008) A new approach to identifying the elastic behaviour of a manufacturing machine. Int J Mach Tools Manuf 48(14):1569–1577

    Article  Google Scholar 

  20. Zhang G, Huang Y, Shi W, Fu W (2003) Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int J Mach Tools Manuf 43(7):699–706

    Article  Google Scholar 

  21. Renton D, Elbestawi M (2001) Motion control for linear motor feed drives in advanced machine tools. Int J Mach Tools Manuf 41(4):479–507

    Article  Google Scholar 

  22. Zaeh M, Siedl D (2007) A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Ann Manuf Technol 56(1):383–386

    Article  Google Scholar 

  23. Taylor S, Tobias S (1964) Lumped-constants method for the prediction of the vibration characteristics of machine tool structures. In Proc 5th Int MTDR Conf

  24. Hijink J, Van Der Wolf A (1974) Analysis of a milling machine: computed results versus experimental data. In Proceedings of the fourteenth international machine tool design and research conference 553–558

  25. Beards C (1982) Damping in structural joints. Shock Vib Inf Center Shock Vib Dig 14(6):9–11

    Google Scholar 

  26. Tlusty J, Ismail F (1980) Dynamic structural identification tasks and methods. CIRP Ann Manuf Technol 29(1):251–255

    Article  Google Scholar 

  27. Ahmadian H, Jalali H (2007) Identification of bolted lap joints parameters in assembled structures. Mech Syst Signal Process 21(2):1041–1050

    Article  Google Scholar 

  28. Tian H, Li B, Liu H, Mao K, Peng F, Huang X (2011) A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools. Int J Mach Tools Manuf 51(3):239–249

    Article  Google Scholar 

  29. Mao K, Li B, Wu J, Shao X (2010) Stiffness influential factors-based dynamic modeling and its parameter identification method of fixed joints in machine tools. Int J Mach Tools Manuf 50(2):156–164

    Article  Google Scholar 

  30. Shamine DM, Shin YC (2000) Analysis of no. 50 taper joint stiffness under axial and radial loading. J Manuf Process 2(3):167–173

    Article  Google Scholar 

  31. Namazi M, Altintas Y, Abe T, Rajapakse N (2007) Modeling and identification of tool holder–spindle interface dynamics. Int J Mach Tools Manuf 47(9):1333–1341

    Article  Google Scholar 

  32. Xu C, Zhang J, Wu Z, Yu D, Feng P (2013) Dynamic modeling and parameters identification of a spindle–holder taper joint. Int J Adv Manuf Technol 67(5–8):1517–1525

    Article  Google Scholar 

  33. Kolar P, Sulitka M, Janota M (2011) Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. Int J Adv Manuf Technol 54(1):11–20

    Article  Google Scholar 

  34. Okwudire CE, Altintas Y (2009) Hybrid modeling of ball screw drives with coupled axial, torsional, and lateral dynamics. J Mech Des 131(7):071002

    Article  Google Scholar 

  35. Vicente DA, Hecker RL, Villegas FJ, Flores GM (2012) Modeling and vibration mode analysis of a ball screw drive. Int J Adv Manuf Technol 58(1–4):257–265

    Article  Google Scholar 

  36. Dhupia JS, Ulsoy AG, Katz R, Powalka B (2008) Experimental identification of the nonlinear parameters of an industrial translational guide for machine performance evaluation. J Vib Control 14(5):645–668

    Article  Google Scholar 

  37. Ohta H, Tanaka K (2010) Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J Tribol 132(1):011102

    Article  Google Scholar 

  38. Shaw D, Su W (2013) Stiffness analysis of linear guideways without preload. J Mech 29(02):281–286

    Article  Google Scholar 

  39. Li H, Li B, Mao K, Huang X, Peng F (2014) A parameterized model of bolted joints in machine tools. Int J Acoust Vib 19(1):10–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuanmin Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Xiao, W., Mao, K. et al. Hybrid analytic-experimental modeling for machine tool structural dynamics. Int J Adv Manuf Technol 90, 1679–1691 (2017). https://doi.org/10.1007/s00170-016-9507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9507-2

Keywords

Navigation