Skip to main content

Advertisement

Log in

Research of energy-power parameters during powder wire flattening

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A mathematical model of stress–strain behavior is developed for the process of powder wire flattening. Modeling was based on a partition of the deformation zone at a set of elementary volumes and a joint solution of the plasticity condition for porous materials and the equation of static equilibrium of forces within the elementary volume. The proposed mathematical model takes into account the real character of geometric parameter distributions as well as the complex of mechanical properties and conditions of contact friction along the length of the deformation zone. A distinctive feature of this model is an accounting for shell deformation in the deformation zone. This allowed us to define more precisely the plastic deformation zone and take into account the effect of shell bending on the energy-power parameters of the process. The experiments confirmed the validity of the assumptions and the shell influence on the process parameters. The proposed modeling approach provides the possibility to predict and optimize the parameters of an electrode material made by pressure working of powder wire. The derived results of the numerical simulation may be useful in improving the efficiency of the subsequent deposit welding operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirkhanlou S, Jamaati R, Niroumand B, Toroghinejad MR (2011) Manufacturing of high-performance Al356/SiCp composite by CAR process. Mater Manuf Process 26:902–907. doi:10.1080/10426914.2011.577879

    Article  Google Scholar 

  2. Arora HS, Singh H, Dhindaw BK (2012) Composite fabrication using friction stir processing—a review. Int J Adv Manuf Technol 61(9–12):1043–1055. doi:10.1007/s00170-011-3758-8

    Article  Google Scholar 

  3. Chandramouli R, Pandey KS, Kandavel TK, Ashokkumar T, Shanmugasundaram D (2007) Influence of material flow constraints during cold forming on the deformation and densification behaviour of hypoeutectoid P/M steel ring preforms. Int J Adv Manuf Technol 31(9–10):926–932. doi:10.1007/s00170-005-0272-x

    Article  Google Scholar 

  4. Chekmarev AP, Klimenko PA, Vinogradov GA (1963) Investigation of specific pressure, specific friction, and the coefficient of friction during metal powder rolling. Sov Powder Metall 2(2):112–115. doi:10.1007/BF01111823

    Article  Google Scholar 

  5. Chigarev VV, Belik AG, Gribkov EP, Gavrish PA (2015) A mathematical model of the process of rolling flux-cored tapes. Weld Int 26(9):718–722. doi:10.1080/09507116.2014.888192

    Article  Google Scholar 

  6. Chigarev VV, Gavrish PA, Gribkov EP (2012) Investigation of the process of drawing flux-cored wire for welding copper to steel. Weld Int 29(1):70–74. doi:10.1080/09507116.2011.653152

    Article  Google Scholar 

  7. Chigarev VV, Gavrish PA, Gribkov EP (2014) Improving the technological conditions of drawing flux-cored welding wires. Weld Int 28(1):59–61. doi:10.1080/09507116.2013.796655

    Article  Google Scholar 

  8. Chitkara NR, Liaghat GH (2001) Working pressure, deformation modes and fracture in open-piercing of cylindrical disks made of compacted sintered aluminium powder. Int J Adv Manuf Technol 17(12):889–909. doi:10.1007/s001700170100

    Article  Google Scholar 

  9. Danil’chenko BV (1989) Surfacing wear–self–protective powder. Autom Weld 5:38–41 (in Russian)

    Google Scholar 

  10. Druyanov BA (1989) Applied plasticity theory for porous bodies. Mashinostroenie, Moscow, p 168 (in Russian)

    Google Scholar 

  11. Dunaevskij VI, Samojlov VA, Satonin AV, Egorov AB (1994) A one-dimensional mathematical modeling of stress–strain state in the straightening stretch bending. Izv. vuzov Chernaja metallurgija. №9. - S. 44-47

  12. Es-Saheb MH, Albedah A, Benyahia F (2011) Diametral compression test: validation using finite element analysis. Int J Adv Manuf Technol 57(5–8):501–509. doi:10.1007/s00170-011-3328-0

    Article  Google Scholar 

  13. Fridman Ja. B (1974) Mechanical properties of metals / Ja.B. Fridman // V2t. T.1. Metallurgy and heat processing of steel. – M.; Mashinostroenie 472 s

  14. Fu MW, Chan WL (2013) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67(9–12):2411–2437. doi:10.1007/s00170-012-4661-7

    Article  Google Scholar 

  15. Gogaev KA, Kalutskii GYA, Voropaev VS (2013) Contact stresses in the deformation zone and average pressure during asymmetric rolling of metal powders. Powder Metall Met C 52(3–4):126–131. doi:10.1007/s11106-013-9504-z

    Article  Google Scholar 

  16. Gribkov EP, Perig AV, Danilyuk VA (2015) Research into the process of producing powder tapes. Int J Adv Manuf Technol 77(95–8):1087–1104. doi:10.1007/s00170-014-6496-x

    Article  Google Scholar 

  17. Guigon P, Simon O (2003) Roll press design—influence of force feed systems on compaction. Powder Technol 130:257–264. doi:10.1016/S0032-5910(02)00223-1

    Article  Google Scholar 

  18. Hirohata T, Masaki S, Shima S (2001) Experiment on metal powder compaction by differential speed rolling. J Mater Process Technol 111:113–117. doi:10.1016/S0924-0136(01)00492-7

    Article  Google Scholar 

  19. Hrairi M, Chtourou H, Gakwaya A, Guillot M (2011) Modeling the powder compaction process using the finite element method and inverse optimization. Int J Adv Manuf Technol 56(5–8):631–647. doi:10.1007/s00170-011-3211-z

    Article  Google Scholar 

  20. Kailas SV (2009) Influence of friction during forming processes—a study using a numerical simulation technique. Int J Adv Manuf Technol 40(11–12):1067–1076. doi:10.1007/s00170-008-1425-5

    Google Scholar 

  21. Karimi HR, Djokoto SS (2012) Instrumentation and modeling of high-pressure roller crusher for silicon carbide production. Int J Adv Manuf Technol 62(9–12):1107–1113. doi:10.1007/s00170-011-3871-8

    Article  Google Scholar 

  22. Katashinskii VP, Shtern MB (1983) Stress–strain state of powder being rolled in the densification zone. I. Mathematical model of rolling in the densification zone. Powder Metall Met Ceram 22(11):882–885. doi:10.1007/BF00805540

    Article  Google Scholar 

  23. Katashinskii VP, Shtern MB (1983) Stress–strain state of powder being rolled in the densification zone. Powder Metall Met Ceram 22(12):972–976. doi:10.1007/BF00802421

    Article  Google Scholar 

  24. Kazeminezhad M, Karimi Taheri A (2005) An experimental investigation on the deformation behavior during wire flat rolling process. J Mater Process Tech 160(3):313–320. doi:10.1016/j.jmatprotec.2004.06.020

    Article  Google Scholar 

  25. Kazeminezhad M, Karimi Taheri A, Kiet Tieu A (2008) A study on the cross-sectional profile of flat rolled wire. J Mater Process Tech 200:325–330. doi:10.1016/j.jmatprotec.2007.09.029

    Article  Google Scholar 

  26. Keshavarz S, Khoei AR, Molaeinia Z (2013) Genetic algorithm-based numerical optimization of powder compaction process with temperature-dependent cap plasticity model. Int J Adv Manuf Technol 64(5–8):1057–1072. doi:10.1007/s00170-012-4053-z

    Article  Google Scholar 

  27. Ksiezarek S, Kazana W, Ciura L, Marszowski K, Woch M (2011) Bimetallic wires: technology for their mechanical cold cladding and functional properties. Arch Metall Mater 56(4):891–895. doi:10.2478/v10172-011-0097-6

    Google Scholar 

  28. Kumakura H, Matsumoto A, Fujii H, Togano K (2001) High transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu–Ni tubes. Appl Phys Lett 79(15):2435–2437. doi:10.1063/1.1407856

    Article  Google Scholar 

  29. Kumar S, Sharma V, Choudhary AKS, Chattopadhyaya S, Hloch S (2013) Determination of layer thickness in direct metal deposition using dimensional analysis. Int J Adv Manuf Technol 67(9–12):2681–2687. doi:10.1007/s00170-012-4683-1

    Article  Google Scholar 

  30. Lambiase F, Di Ilio A (2012) Experimental and finite element investigation of roll drawing process. J Mater Eng Perform 21(2):161–166. doi:10.1007/s11665-011-9932-1

    Article  Google Scholar 

  31. Mori K, Osakada K (1987) Analysis of the forming process of sintered powder metals by rigid-plastic finite-element method. Int J Mech Sci 29(4):229–238. doi:10.1016/0020-7403(87)90037-3

    Article  MATH  Google Scholar 

  32. Murata Y, Yuasa E, Tanaka M (2009) Experimental analysis of metal flow and strain distribution in rolling of Sn-Pb powder. J Solid Mech Mater Eng 3(2):167–177. doi:10.1299/jmmp.3.167, Special Issue on Recent Advances in Materials and Processing

    Article  Google Scholar 

  33. Nakamura Y, Inada R, Oota A (2003) Phase formation mechanism and properties of Ag-sheathed (Bi, Pb)-2223 tapes prepared by two-powder method. Physica C 392–396(2):1015–1019. doi:10.1016/S0921-4534(03)01157-2

    Article  Google Scholar 

  34. Narayan S, Rajeshkannan A (2013) Influence of carbon content on workability behavior in the formation of sintered plain carbon steel preforms. Int J Adv Manuf Technol 64(1–4):105–111. doi:10.1007/s00170-012-4002-x

    Article  Google Scholar 

  35. Otrok AI, Vinogradov GA, Katrus OA, Katashinskii VP (1973) Compressibility of heterogeneous powder mixtures in rolling. Sov Powder Metall 12(1):17–22. doi:10.1007/BF00803969

    Google Scholar 

  36. Perig AV, Golodenko NN (2014) CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants. Int J Adv Manuf Technol 74(5–8):943–962. doi:10.1007/s00170-014-5827-2

    Article  Google Scholar 

  37. Perig AV, Golodenko NN (2014) CFD simulation of ECAE through a multiple-angle die with a movable inlet wall. Chem Eng Commun 201(9):1221–1239. doi:10.1080/00986445.2014.894509

    Article  Google Scholar 

  38. Perig AV, Golodenko NN (2015) ECAP process improvement based on the design of rational inclined punch shapes for the acute-angled Segal 2θ-dies: CFD 2-D description of dead zone reduction. Mech Sci 6(1):41–49. doi:10.5194/ms-6-41-2015

    Article  Google Scholar 

  39. Perig AV, Laptev AM, Golodenko NN, Erfort YA, Bondarenko EA (2010) Equal channel angular extrusion of soft solids. Mat Sci Eng A-Struct 527(16–17):3769–3776. doi:10.1016/j.msea.2010.03.043

    Article  Google Scholar 

  40. Petrosyan GL (1979) The deformation theory of plasticity of porous materials. Izvestiya vuzov. Mech Eng 11:5–8 (in Russian)

    Google Scholar 

  41. Potapkin VF, Levkin AN, Satonin AV, Romanov SM, Vorob’yev YA, Gribkov EP (2000) Stress state and kinematics for rolling of powered materials on metal substrate. Powder Metall Met C 39(1–2):11–17. doi:10.1007/BF02677434

    Article  Google Scholar 

  42. Przondziono J (2008) Flattening of narrow and thin stainless steel strips. Arch Mater Sci Eng 29(2):121–124, http://www.archivesmse.org/vol29_2/29211.pdf

    Google Scholar 

  43. Ramakrishnan M, Muthupandi V (2013) Application of submerged arc welding technology with cold wire addition for drum shell long seam butt welds of pressure vessel components. Int J Adv Manuf Technol 65(5–8):945–956. doi:10.1007/s00170-012-4230-0

    Article  Google Scholar 

  44. Rumiński M, Skołyszewski A (2003) Some aspects of manufacturing and application of flattened wires. In: ESAFORM : proceedings of the 6th [sixth] international ESAFORM conference on material forming : Salerno, Italy April 28–30, 2003. Nuova Ipsa Editore, Palermo, pp 743–746

    Google Scholar 

  45. Simon O, Guigon P (2003) Correlation between powder-packing properties and roll press compact heterogeneity. Powder Technol 130:257–264. doi:10.1016/S0032-5910(02)00202-4

    Article  Google Scholar 

  46. Soltanian S, Wang XL, Li AH, Collings EW, Sumption MD, Lee E, Liu HK, Dou SX (2002) Fabrication and critical current density in 16-filament stainless steel/Fe/MgB2 square wire. Solid State Commun 124(1–2):59–62. doi:10.1016/S0038-1098(02)00380-0

    Article  Google Scholar 

  47. Stepanenko AV, Isaevich LA, Kharlan VE (1990) Geometric and power parameters of the metal powder rolling process. I. Boundaries of the seat of deformation and stress field in the lag and forward slip zones. Powder Metall Met Ceram 29(2):101–105. doi:10.1007/BF00794530

    Article  Google Scholar 

  48. Stepanenko AV, Isaevich LA, Kharlan VE (1991) Geometric and energy-force parameters of the process of rolling of metal powders II. The rolling power, moment, and contact stresses and distribution of density in the area of deformation. Powder Metall Met Ceram 30(2):101–105. doi:10.1007/BF00797280

    Article  Google Scholar 

  49. Storozhev MV (1977) Theory of metal forming: a textbook for high schools / M. V. Storozhev, E. A. Popov. – 4-e izd., pererab. i dop. – M.: Mashinostroenie 423 s

  50. Tseng H-C, Hung C, Huang C-C (2010) An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment. Int J Adv Manuf Technol 48(9–12):1029–1036. doi:10.1007/s00170-009-2446-4

    Article  Google Scholar 

  51. Vajpai SK, Dube RK, Sangal S (2011) Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from prealloyed powder by hot densification rolling of powder preforms. Metall Mater Trans A 42(10):3178–3189. doi:10.1007/s11661-011-0728-6

    Article  Google Scholar 

  52. Vallellano C, Cabanillas PA, García-Lomas FJ (2008) Analysis of deformations and stresses in flat rolling of wire. J Mater Process Tech 195(1–3):63–71. doi:10.1016/j.jmatprotec.2007.04.124

    Article  Google Scholar 

  53. Vernik EB, Katrus OA (1974) Effects of the surface roughness of rolls on the powder rolling process. Sov Powder Metall 13(7):534–538. doi:10.1007/BF00792556

    Google Scholar 

  54. Vinogradov GA, Katashinskij VP (1979) Theory sheet rolling metal powders and granules. Metallurgy, 224 (in Russian)

  55. Volkogon GM, Dmitriev AM, Dobryakov EP (1991) Advanced technological processes stamping parts from powders and equipment. Mechanical Engineering, 320 (in Russian)

  56. Wang PT, Karabin ME (1994) Evolution of porosity during thin plate rolling of powder-based porous aluminum. Powder Technol 78(1):67–76. doi:10.1016/0032-5910(93)02768-6

    Article  Google Scholar 

  57. Zheng Z-X, Xia W, Zhou ZY (2013) Experimental and numerical modeling for powder rolling. Rev Adv Mater Sci 33:330–336, http://www.ipme.ru/e-journals/RAMS/no_43313/05_433_zheng.pdf

    Google Scholar 

  58. Zhudra AP (2009) New equipment for welding cones and bowls charging devices. Autom Weld 9:57–59 (in Russian)

    Google Scholar 

  59. Zhudra AP (2010) Durable powder surfacing ribbons. Welder 6:6–10 (in Russian)

    Google Scholar 

  60. Zorc B, Kosec L (2005) Geometrical models for the deformation of round reinforcement wires when compressing a reinforced brazed joint. Mater Tehnol 39(5):155–161, http://mit.imt.si/Revija/izvodi/mit055/zorc.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard P. Gribkov.

Ethics declarations

Disclosure

The submission of the authors’ paper implies that it has not been previously published, that it is not under consideration for publication elsewhere, and that it will not be published elsewhere in the same form without the written permission of the editors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribkov, E.P., Perig, A.V. Research of energy-power parameters during powder wire flattening. Int J Adv Manuf Technol 85, 2887–2900 (2016). https://doi.org/10.1007/s00170-016-8714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8714-1

Keywords

Navigation