Skip to main content
Log in

Reduced models of grinding wheel topography and material removal to simulate dynamical aspects in grinding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Increasing competition and short product life cycles make it necessary to optimize and evaluate the outcome of manufacturing processes. In tool grinding, models for the final workpiece geometry and cutting forces are of particular interest. To establish a valid general grinding model, we investigated the cutting process and the influence of local grinding wheel engagements on the material removal. We consequently developed models of material removal and grinding wheel topography, which capture the main correlations in grinding. In combination, temporal cutting forces and final workpiece geometry are predictable and are in excellent agreement with experimental data. The introduced models are valid for grinding in general, since they are solely based on the geometry and process parameters, and hence are applicable for manufacturing process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54 (2):115–138. doi:10.1016/S0007-8506(07)60022-5 10.1016/S0007-8506(07)60022-5

    Article  Google Scholar 

  2. Biermann D, Blum H, Jansen T, Rademacher A, Scheidler A V, Schröder A, Weinert K (2008) Space adaptive finite element methods for dynamic signorini problems in the simulation of the NC-shape grinding process. In: Proceedings of the 1st CIRP international conference on process machine interactions, pp 309–316

  3. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. Ann CIRP 58(2):588–607. doi:10.1016/j.cirp.2009.09.005

    Article  Google Scholar 

  4. Brinksmeier E, Aurich J, Govekar E, Heinzel C, Hoffmeister H W, Klocke F, Peters J, Rentsch R, Stephenson D, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696. doi:10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  5. Chang H C, Wang J J J (2008) A stochastic grinding force model considering random grit distribution. Int J Mach Tools Manuf 48 (12–13):1335–1344. doi:10.1016/j.ijmachtools.2008.05.012 10.1016/j.ijmachtools.2008.05.012

    Article  Google Scholar 

  6. Chen X, Rowe W B (1996a) Analysis and simulation of the grinding process. Part I: generation of the grinding wheel surface. Int J Mach Tools Manuf 36(8):871–882. doi:10.1016/0890-6955(96)00116-2

    Article  Google Scholar 

  7. Chen X, Rowe W B (1996b) Analysis and simulation of the grinding process. Part II: mechanics of grinding. Int J Mach Tools Manuf 36 (8):883–896. doi:10.1016/0890-6955(96)00117-4 10.1016/0890-6955(96)00117-4

    Article  Google Scholar 

  8. Chen X, Rowe W B (1996c) Analysis and simulation of the grinding process. Part III comparison with experiment. Int J Mach Tools Manuf 36(8):897–906. doi:10.1016/S0007-8506(07)62939-4

    Article  Google Scholar 

  9. Chen X, Rowe W B (1998) Analysis and simulation of the grinding process. Part IV: effects of wheel wear. Int J Mach Tools Manuf 38(1–2):41–49. doi:10.1016/S0007-8506(07)62939-4

    Article  Google Scholar 

  10. Chen Y (1990) Untersuchungen über Schwingungen und Welligkeiten beim Außenrundeinstechschleifen [Analysis of vibration and waviness of external plunge-cut grinding], PhD thesis, Universität Hannover

  11. Cooper W L, Lavine A S (2000) Grinding process size effect and kinematics numerical analysis. J Manuf Sci Eng 122(1):59–69. doi:10.1115/1.538888

    Article  Google Scholar 

  12. Deichmueller M, Denkena B, de Payrebrune KM, Kröger M, Wiedemann S, Schröder A, Carstensen C (2013) Modeling of process machine interactions in tool grinding. In: Denkena B, Hollmann F (eds) Process machine interactions, lecture notes in production engineering. doi:10.1007/978-3-642-32448-2_7. Springer, Berlin, pp 143–176

  13. Ernst W (1965) Erhöhte Schnittgeschwindigkeit beim Aussen- und Einstechschleifen und ihr Einfluss auf das Schleifergebnis und die Wirtschaftlichkeit [Increased cutting speed for external and plunge-cut grinding and its influence on the grinding result and the economy], PhD thesis, RWTH Aachen

  14. Fritz A H, Schulze G (2010) Fertigungstechnik [Manufacturing Technology]. Springer-Lehrbuch, Berlin. doi:10.1007/978-3-642-12879-0 10.1007/978-3-642-12879-0

    Book  Google Scholar 

  15. Inasaki I (1996) Grinding process simulation based on the wheel topography measurement. CIRP Ann Manuf Technol 45(1):347–350. doi:10.1016/S0007-8506(07)63077-7

    Article  Google Scholar 

  16. Kassen G, Werner G (1969a) Kinematische Kenngrößen des Schleifvorgangs: Teil 1 [Kinematical parameters for grinding: part 1]. Industrieanzeiger 91(87):2087–2090

    Google Scholar 

  17. Kassen G, Werner G (1969b) Kinematische Kenngrößen des Schleifvorgangs: Teil 2 [Kinematical parameters for grinding: part 2]. Industrieanzeiger 91(95):2323–2326

    Google Scholar 

  18. Klocke F (2005) Fertigungsverfahren 2 [Manufacturing Processes 2]. In: VDI-Buch. 4th edn. Springer, Berlin, DOI 10.1007/3-540-27699-8, (to appear in print)

  19. Klocke F, Kuchle A (2009) Manufacturing processes 2: grinding, honing, lapping. RWTH edition. Springer, Berlin

    Book  Google Scholar 

  20. Klocke F, Beck T, Hoppe S, Krieg T, Müiller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120(1–3):450–457. doi:10.1016/S0924-0136(01)01210-9

    Article  Google Scholar 

  21. Nguyen T, Butler D (2005a) Simulation of precision grinding process, Part 1: generation of the grinding wheel surface. Int J Mach Tools Manuf 45(11):1321–1328. doi:10.1016/j.ijmachtools.2005.01.005 10.1016/j.ijmachtools.2005.01.005

    Article  Google Scholar 

  22. Nguyen T, Butler D (2005b) Simulation of surface grinding process, Part 2: interaction of the abrasive grain with the workpiece. Int J Mach Tools Manuf 45(11):1329–1336. doi:10.1016/j.ijmachtools.2005.01.006

    Article  Google Scholar 

  23. de Payrebrune KM (2015) Dynamical aspects in modeling long cantilevering workpieces in tool grinding. J Sound Vibr 355:407–417. doi:10.1016/j.jsv.2015.06.027

    Article  Google Scholar 

  24. Reichenbach G, Mayer J, Kalpakcioglu S, Shaw M (1956) The role of the chip thickness in grinding. Trans ASME:78

  25. Saint-Gobain Diamantwerkzeuge GmbH (Accessed 1st November 2015) Homepage: http://www.winter-superabrasives.com

  26. Tönshoff H, Denkena B, Jacobsen J, Heimann B, Schütte O, Grudzinski K, Bodnar A (2004) Nonlinear dynamics of an external cylindrical grinding system and a strategy for chatter compensation. Nonlin Dyn Product Syst:187–207

  27. Tönshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer

  28. Warnecke G, Zitt U (1998) Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Ann Manuf Technol 47 (1):265–270. doi:10.1016/S0007-8506(07)62831-5 10.1016/S0007-8506(07)62831-5

  29. Weck M, Hennes N, Schulz A (2001) Dynamic behaviour of cylindrical traverse grinding processes. CIRP Ann Manuf Technol 50(1):213–216. doi:10.1016/S0007-8506(07)62107-6

    Article  Google Scholar 

  30. Zhou X, Xi F (2002) Modeling and predicting surface roughness of the grinding process. Int J Mach Tools Manuf 42(8):969–977. doi:10.1016/S0890-6955(02)00011-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kröger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Payrebrune, K.M., Kröger, M. Reduced models of grinding wheel topography and material removal to simulate dynamical aspects in grinding. Int J Adv Manuf Technol 88, 33–43 (2017). https://doi.org/10.1007/s00170-016-8694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8694-1

Keywords

Navigation