Skip to main content
Log in

Laser beam micro-machining under water immersion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Underwater laser beam machining is considered as one of the alternative approaches to minimize the undesired impacts of dry laser beam machining (LBM) such as coarse machining kerf, high re-deposition of melt debris, and thermal damages. The underwater laser beam machining is equally suited for the fabrication of micro-features like 3D cavities, micro-holes, and micro-channels. In most of the literature studies, the water in dynamic mode (flowing with certain flow rate) is generally used to reduce the melt re-deposition and to improve the machining kerf and surface roughness. This study presents the use of water in static mode (still water with zero flow rate) rather dynamic mode, for the fabrication of micro-channels in nickel-based superalloy (Inconel 718). Instead of reducing the melt re-deposition, static water allowed to deposit more debris within the machining zone. This re-deposition is used to participate in micro-channel formation. After every initial passing scan, the re-deposited melt debris are piled up at the middle region of main channel that disturbs the beam focus at middle region. Due to focus disturbance, the piled up debris gets removed by partial melting of the central region and base metal remains unaffected due to partial heating. The main channel finally divided into two sub-channels. Geometrical characteristics (width, depth, and taper angle) were considered as the process responses in order to study the effects of laser power, pulse repetition rate, and laser scan speed. The results revealed that among other parameters, laser scan speed mainly influenced the geometrical characteristics of micro-channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazakevich PV, Simakin AV, Voronov VV, Shafeev GA (2006) Laser induced synthesis of nanoparticles in liquids. Appl Surf Sci 252(13):4373–4380

    Article  Google Scholar 

  2. Tangwarodomnukun V, Wang J, Huang CZ, Zhu HT (2012) An investigation of hybrid laser–waterjet ablation of silicon substrates. Int J Mach Tools Manuf 56:39–49

    Article  Google Scholar 

  3. Mahdieh MH, Nikbakht M, Eghlimi Moghadam Z, Sobhani M (2010) Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water. Appl Surf Sci 256(6):1778–1783

    Article  Google Scholar 

  4. Morita N, Ishida S, Fujimori Y, Ishikawa K (1988) Pulsed laser processing of ceramics in water. Appl Phys Lett 52:1965

    Article  Google Scholar 

  5. Stephan Roth MG (2000) Novel technique for high-quality microstructuring with excimer lasers

  6. Zhu S, Lu YF, Hong MH, Chen XY (2001) Laser ablation of solid substrates in water and ambient air. J Appl Phys 89(4):2400–2403

    Article  Google Scholar 

  7. Peyre P, Berthe L, Scherpereel X, Fabbro R (1998) Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour. J Mater Sci 33(6):1421–1429

    Article  Google Scholar 

  8. Dolgaev SI, Lyalin AA, Shafeev GA, Voronov S (1996) Fast etching and metallization of SiC ceramics with copper-vapor-laser radiation. Appl Phys A 63(1):75–79

    Article  Google Scholar 

  9. Voronov VV, Dolgaev SI, Lyalin AA, Shafeev GA (1996) Laser-assisted etching of the surface of polycrystalline silicon carbide by copper-vapour laser radiation. Quantum Electron 26(7):621

    Article  Google Scholar 

  10. Patel DN, Singh RP, Thareja RK (2014) Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl Surf Sci 288:550–557

    Article  Google Scholar 

  11. Ohara MNOJ (1997) High aspect ratio etching by infrared laser induced micro bubbles. 175–179

  12. Choo KL, Ogawa Y, Kanbargi G, Otra V, Raff LM, Komanduri R (2004) Micromachining of silicon by short-pulse laser ablation in air and under water. Mater Sci Eng A 372(1–2):145–162

    Article  Google Scholar 

  13. Geiger M, Becker W, Rebhan T, Hutfless J, Lutz N (1996) Increase of efficiency for the XeCl excimer laser ablation of ceramics. Appl Surf Sci 96–98:309–315

    Article  Google Scholar 

  14. Kruusing A, Leppävuori S, Uusimäki A, Petrêtis B, Makarova O (1999) Micromachining of magnetic materials. Sensors Actuators A Phys 74(1–3):45–51

    Article  Google Scholar 

  15. Li Y, Itoh K, Watanabe W, Yamada K, Kuroda D, Nishii J, Jiang Y (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26(23):1912–1914

    Article  Google Scholar 

  16. Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, Dumkum C (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf 89:14–28

    Article  Google Scholar 

  17. Dowding CF, Lawrence J (2009) Impact of open de-ionized water thin film laminar immersion on the liquid-immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate. Opt Lasers Eng 47(11):1169–1176

    Article  Google Scholar 

  18. Daminelli G, Krüger J, Kautek W (2004) Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467(1–2):334–341

    Article  Google Scholar 

  19. Acherjee B, Prakash S, Kuar AS, Mitra S (2014) Grey relational analysis based optimization of underwater Nd:YAG laser micro-channeling on PMMA. Procedia Eng 97:1406–1415

    Article  Google Scholar 

  20. Kang HW, Lee H, Welch AJ (2008) Laser ablation in a liquid-confined environment using a nanosecond laser pulse. J Appl Phys 103(8):083101

    Article  Google Scholar 

  21. Klocke F, Welling D, Klink A, Veselovac D, Nöthe T, Perez R (2014) Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP 14:430–435

    Article  Google Scholar 

  22. Manohar M, Selvaraj T, Sivakumar D, Gopinath S, George KM (2014) Experimental study to assess the effect of electrode bottom profiles while machining Inconel 718 through EDM process. Procedia Mater Sci 6:92–104

    Article  Google Scholar 

  23. Escobar-Palafox GA, Gault RS, Ridgway K (2012) Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP 1:404–408

    Article  Google Scholar 

  24. Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J Manuf Sci Technol 6(3):198–203

    Article  Google Scholar 

  25. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26

    Article  Google Scholar 

  26. Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of Inconel 718 using Taguchi method. Procedia Eng 97:1637–1646

    Article  Google Scholar 

  27. Attia H, Tavakoli S, Vargas R, Thomson V (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Technol 59(1):83–88

    Article  Google Scholar 

  28. Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions—a comprehensive review. Procedia Eng 97:1626–1636

    Article  Google Scholar 

  29. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  30. Leshock CE, Kim J-N, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897

    Article  Google Scholar 

  31. Abdul Aleem BJ, Hashmi MSJ, Yilbas BS (2011) Laser controlled melting of pre-prepared inconel 718 alloy surface. Opt Lasers Eng 49(11):1314–1319

    Article  Google Scholar 

  32. Yilbas BS, Akhtar SS, Karatas C (2010) Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Opt Lasers Eng 48(7–8):740–749

    Article  Google Scholar 

  33. Mori Seiki D. DMG Middle East FZE, Jebel Ali Free Zone, JAFZA Towers, Lob 18, Office 2403, P.O. Box, Dubai, U.A.E.” [Online]. Available: http://www.dmgmoriseiki.com/

  34. Teixidor D, Ferrer I, Ciurana J, Özel T (2013) Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robot Comput Integr Manuf 29(1):209–218

    Article  Google Scholar 

  35. Instruments H. Hanna Instruments, Rhode Island, 584 Park East Drive Woonsocket, RI 02895. [Online]. Available: http://www.hannainst.com/usa/

  36. Metals M. Magellan Industrial Trading Company, Inc. (dba Magellan Metals), 227 Wilson Avenue. South Norwalk, CT 06854 U.S.A. [Online]. Available: http://www.magellanmetals.com/

  37. Weber R, Hafner M, Michalowski A, Graf T (2011) Minimum damage in CFRP laser processing. Phys Procedia 12(Part B):302–307

    Article  Google Scholar 

  38. Perry TL, Werschmoeller D, Li X, Pfefferkorn FE, Duffie NA (2009) Pulsed laser polishing of micro-milled Ti6Al4V samples. J Manuf Process 11(2):74–81

    Article  Google Scholar 

  39. Lee SW, Shin HS, Chu CN (2013) Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Appl Surf Sci 264:653–663

    Article  Google Scholar 

  40. Dai Y-T, Xu G, Tong X-L (2012) Deep UV laser etching of GaN epilayers grown on sapphire substrate. J Mater Process Technol 212(2):492–496

    Article  Google Scholar 

  41. Yan Y, Li L, Sezer K, Wang W, Whitehead D, Ji L, Bao Y, Jiang Y (2011) CO2 laser underwater machining of deep cavities in alumina. J Eur Ceram Soc 31(15):2793–2807

    Article  Google Scholar 

  42. Cicală E, Soveja A, Sallamand P, Grevey D, Jouvard JM (2008) The application of the random balance method in laser machining of metals. J Mater Process Technol 196(1–3):393–401

    Article  Google Scholar 

  43. Nieto D, Delgado T, Flores-Arias MT (2014) Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt Lasers Eng 63:11–18

    Article  Google Scholar 

  44. Al-Mamun SA, Nakajima R, Ishigaki T (2012) Effect of liquid level and laser power on the formation of spherical alumina nanoparticles by nanosecond laser ablation of alumina target. Thin Solid Films 523:46–51

    Article  Google Scholar 

  45. Long Y, Shi T, Xiong L (2010) Excimer laser electrochemical etching n-Si in the KOH solution. Opt Lasers Eng 48(5):570–574

    Article  Google Scholar 

  46. Dowding C, Lawrence J (2010) Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining. Appl Surf Sci 256(12):3705–3713

    Article  Google Scholar 

  47. Mullick S, Madhukar YK, Roy S, Kumar S, Shukla DK, Nath AK (2013) Development and parametric study of a water-jet assisted underwater laser cutting process. Int J Mach Tools Manuf 68:48–55

    Article  Google Scholar 

  48. E. Machine tool manufacturer. 24/2 Nanded, Taluka: Haveli District:Pune, Maharashtra, INDIA 411041. Electronica. [Online]. Available: http://www.electronicagroup.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmari, A.M., Ahmed, N. & Darwish, S. Laser beam micro-machining under water immersion. Int J Adv Manuf Technol 83, 1671–1681 (2016). https://doi.org/10.1007/s00170-015-7699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7699-5

Keywords

Navigation