Skip to main content
Log in

Development of hybrid process for double-side flexible printed circuit boards using roll-to-roll gravure printing, via-hole printing, and electroless plating

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A hybrid process including roll-to-roll (R2R) gravure printing, via-hole printing, and electroless plating was investigated for the creation of a double-side flexible printed circuit board (FPCB). A R2R gravure process with an Ag seed layer that includes front- and back-side printing with a polyimide film at the center was investigated. The gravure-printed Ag pattern was laser drilled for high accuracy. A via hole was filled with a low-viscosity Ag ink using the drop-casting method. In addition, an electroless Cu plating process was performed to increase the conductivity of the printed circuit. The interconnection performance was confirmed from the resistance values obtained using a feed-through test and microscopic images. To evaluate the reliability of the FPCB, a cyclic bending motion test was performed; stable electrical performance was observed even after 400,000 cycles. The results obtained in this study suggest that the proposed hybrid process for double-side FPCBs is viable for a mass production system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantatore E (2012) Applications of organic and printed electronics: a technology-enabled revolution. Springer

  2. Keränen K, Korhonen P, Rekilä J, Tapaninen O, Happonen T, Makkonen P, Rönkä K (2015) Roll-to-roll printed and assembled large area LED lighting element. Int J Adv Manuf Technol:1–8. doi:10.1007/s00170-015-7244-6

  3. Noh J-H, Kim I, Park S, Jo J, Kim D, Lee T-M (2013) A study on the enhancement of printing location accuracy in a roll-to-roll gravure offset printing system. Int J Adv Manuf Technol 68(5–8):1147–1153. doi:10.1007/s00170-013-4907-z

    Article  Google Scholar 

  4. Tseng H-Y, Subramanian V (2011) All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org Electron 12(2):249–256. doi:10.1016/j.orgel.2010.11.013

    Article  Google Scholar 

  5. Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5):2224–2231. doi:10.1021/la7026847

    Article  Google Scholar 

  6. Cook BS, Cooper JR, Tentzeris MM (2013) Multi-layer RF capacitors on flexible substrates utilizing inkjet printed dielectric polymers. IEEE Microwave Wirel Compon Lett 23(7):353–355. doi:10.1109/lmwc.2013.2264658

    Article  Google Scholar 

  7. Koski K, Koski E, Virtanen J, Björninen T, Sydänheimo L, Ukkonen L, Elsherbeni A (2012) Inkjet-printed passive UHF RFID tags: review and performance evaluation. Int J Adv Manuf Technol 62(1–4):167–182. doi:10.1007/s00170-011-3782-8

    Article  Google Scholar 

  8. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82. doi:10.1039/c0an00406e

    Article  Google Scholar 

  9. Yang W, Russel T, Kai Y, Steve B, John T (2013) Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Meas Sci Technol 24(7):075104

    Article  Google Scholar 

  10. Shi CWP, Shan X, Tarapata G, Jachowicz R, Weremczuk J, Hui HT (2011) Fabrication of wireless sensors on flexible film using screen printing and via filling. Microsyst Technol 17(4):661–667. doi:10.1007/s00542-010-1161-2

    Article  Google Scholar 

  11. Krebs FC, Fyenbo J, Jorgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20(41):8994–9001. doi:10.1039/c0jm01178a

    Article  Google Scholar 

  12. Alstrup J, Jørgensen M, Medford AJ, Krebs FC (2010) Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Appl Mater Interfaces 2(10):2819–2827. doi:10.1021/am100505e

    Article  Google Scholar 

  13. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4):465–475. doi:10.1016/j.solmat.2008.12.012

    Article  Google Scholar 

  14. Park J, Shin K, Lee C (2014) Optimized design for anti-reflection coating process in roll-to-roll slot-die coating system. Robot Comput Integr Manuf 30(5):432–441

    Article  Google Scholar 

  15. Kitsomboonloha R, Morris SJS, Rong X, Subramanian V (2012) Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing. Langmuir 28(48):16711–16723. doi:10.1021/la3037132

    Article  Google Scholar 

  16. Yang J, Vak D, Clark N, Subbiah J, Wong WWH, Jones DJ, Watkins SE, Wilson G (2013) Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Sol Energy Mater Sol Cells 109(0):47–55. doi:10.1016/j.solmat.2012.10.018

    Article  Google Scholar 

  17. Hernandez-Sosa G, Bornemann N, Ringle I, Agari M, Dörsam E, Mechau N, Lemmer U (2013) Rheological and drying considerations for uniformly gravure-printed layers: towards large-area flexible organic light-emitting diodes. Adv Funct Mater 23(25):3164–3171. doi:10.1002/adfm.201202862

    Article  Google Scholar 

  18. Noh J, Jung K, Kim J, Kim S, Cho S, Cho G (2012) Fully gravure-printed flexible full adder using SWNT-based TFTs. IEEE Electron Device Lett 33(11):1574–1576. doi:10.1109/led.2012.2214757

    Article  Google Scholar 

  19. Lee C, Kang H, Kim C, Shin K (2010) A novel method to guarantee the specified thickness and surface roughness of the roll-to-roll printed patterns using the tension of a moving substrate. J Microelectromech Syst 19(5):1243–1253. doi:10.1109/jmems.2010.2067194

    Article  Google Scholar 

  20. Nguyen H-A-D, Lee C, Shin K-H (2013) A mathematical model to predict surface roughness and pattern thickness in roll-to-roll gravure printed electronics. Robot Comput Integr Manuf 29(4):26–32. doi:10.1016/j.rcim.2012.10.003

    Article  Google Scholar 

  21. Nguyen HAD, Lee J, Kim CH, Shin K-H, Lee D (2013) An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J Micromech Microeng 23(9):095010

    Article  Google Scholar 

  22. Park J, Nguyen HAD, Park S, Lee J, Kim B, Lee D (2015) Roll-to-roll gravure printed silver patterns to guarantee printability and functionality for mass production. Current Applied Physics

  23. Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv Mater 13(21):1601–1605. doi:10.1002/1521-4095(200111)13:21<1601::aid-adma1601>3.0.co;2-x

    Article  Google Scholar 

  24. Mandamparambil R, Fledderus H, van den Brand J, Saalmink M, Kusters R, Podprocky T, Van Steenberge G, De Baets J, Dietzel A A comparative study of via drilling and scribing on PEN and PET substrates for flexible electronic applications using excimer and Nd:YAG laser sources. In: Flexible Electronics & Displays Conference and Exhibition, 2009, 2–5 Feb. 2009 2009. pp 1–7. doi:10.1109/fedc.2009.5069273

  25. Moscicki A, Falat T, Smolarek A, Kinart A, Felba J, Borecki J Interconnection process by ink jet printing method. In: Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on, 20–23 Aug. 2012 2012. pp 1–5. doi:10.1109/nano.2012.6322108

  26. Koskinen S, Pykari L, Mantysalo M (2013) Electrical performance characterization of an inkjet-printed flexible circuit in a mobile application. IEEE Trans Compon Packag Manuf Technol 3(9):1604–1610. doi:10.1109/tcpmt.2013.2261774

    Article  Google Scholar 

  27. Sridhar A, Cauwe M, Fledderus H, Kusters RHL, van den Brand J Novel interconnect methodologies for ultra-thin chips on foils. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, May 29 2012-June 1 2012 2012. pp 238–244. doi:10.1109/ectc.2012.6248834

  28. Kang H, Baumann RR (2014) Mathematical modeling and simulations for machine directional register in hybrid roll-to-roll printing systems. Int J Precis Eng Manuf 15(10):2109–2116

    Article  Google Scholar 

  29. Chang Y, Yang C, Zheng X-Y, Wang D-Y, Yang Z-G (2014) Fabrication of copper patterns on flexible substrate by patterning–adsorption–plating process. ACS Appl Mater Interfaces 6(2):768–772

    Article  Google Scholar 

  30. Kang H, Sowade E, Baumann RR (2014) Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds. ACS Appl Mater Interfaces 6(3):1682–1687

    Article  Google Scholar 

  31. Nguyen HAD, Lee J, Kim CH, Shin K-H, Lee D (2013) An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J Micromech Microeng 23(9):095010

    Article  Google Scholar 

  32. Halonen E, Halme A, Karinsalo T, Iso-Ketola P, Mantysalo M, Makinen R Dynamic bending test analysis of inkjet-printed conductors on flexible substrates. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, May 29 2012-June 1 2012 2012. pp 80–85. doi:10.1109/ectc.2012.6248810

  33. Quintero JAQ, Mancosu RD, De Oliveira AWC, Rolim DC, Da Silva OC, Silva JM Electro-mechanical evaluation of Ag trace patterns by ink-jet printing. In: Electronics Packaging Technology Conference, 2009. EPTC ‘09. 11th, 9–11 Dec. 2009 2009. pp 1000–1005. doi:10.1109/eptc.2009.5416397

  34. Jakubowska M, Słoma M, Młożniak A (2011) Printed transparent electrodes containing carbon nanotubes for elastic circuits applications with enhanced electrical durability under severe conditions. Mater Sci Eng B 176(4):358–362. doi:10.1016/j.mseb.2010.10.002

    Article  Google Scholar 

  35. Lee HM, Lee HB, Jung DS, Yun J-Y, Ko SH, Park SB (2012) Solution processed aluminum paper for flexible electronics. Langmuir 28(36):13127–13135. doi:10.1021/la302479x

    Article  Google Scholar 

  36. Merilampi S, Laine-Ma T, Ruuskanen P (2009) The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron Reliab 49(7):782–790. doi:10.1016/j.microrel.2009.04.004

    Article  Google Scholar 

  37. Nguyen HAD, Hoang N, Shin K-H, Lee S (2013) Statistical analysis on the effect of calendering process parameters on the geometry and conductivity of printed patterns. Robot Comput Integr Manuf 29(2):424–430

    Article  Google Scholar 

  38. Lee C, Shin KH (2005) Strip tension control considering the temperature change in Multi-Span systems. J Mech Sci Technol 19(4):958–967. doi:10.1007/bf02919178

    Article  MathSciNet  Google Scholar 

  39. Krug K, Liu Y-F, Ho W-H, Lee Y-L, Dow W-P, Yau S-L (2012) Electrochemical Cu growth on MPS-modified Au(111) electrodes. J Phys Chem C 116(33):17507–17517. doi:10.1021/jp302406e

    Article  Google Scholar 

  40. Kobayashi T, Kawasaki J, Mihara K, Honma H (2001) Via-filling using electroplating for build-up PCBs. Electrochim Acta 47(1–2):85–89. doi:10.1016/S0013-4686(01)00592-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, J., Park, S. et al. Development of hybrid process for double-side flexible printed circuit boards using roll-to-roll gravure printing, via-hole printing, and electroless plating. Int J Adv Manuf Technol 82, 1921–1931 (2016). https://doi.org/10.1007/s00170-015-7507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7507-2

Keywords

Navigation