Skip to main content
Log in

Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Dynamic stability of cutting processes against chatter vibration is a key requirement for high-speed machining and high material removal rate with high-quality surface finish. In the present work, the stiffness and damping of the machine tool are varied semi-actively by means of a magnetorheological (MR) damper to suppress chatter. An integrated mechatronic model is presented for the chatter analysis of a machine tool equipped with MR damper. Since the structure becomes nonlinear in the presence of MR damper, a novel chatter detection index (CDI) is developed to detect chatter from time-domain vibration signals. Subsequently, a fuzzy controller is designed to compute the best supply voltage to MR damper based on the measured vibration signals. The obtained results from the numerical analysis of the integrated model are encouraging, demonstrating a significant improvement in the dynamic stability of machining process, as well as the ability of detecting and suppressing chatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sathianarayanan D, Karunamoorthy L, Srinivasan J, Kandasami GS, Palanikamur K (2008) Chatter suppression in boring operation using magnetorheological fluid damper. Mater Manuf Process 23:329–335

    Article  Google Scholar 

  2. Mei D, Kong T, Shih AJ, Chen Z (2009) Magnetorheological fluid-controlled boring bar for chatter suppression. J Mater Process Technol 209:1861–1870

    Article  Google Scholar 

  3. Wang B, Fei R (2001) On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7):779–792

    Article  Google Scholar 

  4. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  5. Tobias SA (1965) Machine-tool vibration. Blackie and Sons, London

    Google Scholar 

  6. Altintas Y, Chan PK (1992) In process detection and suppression of chatter in milling. Int J Mach Tools Manuf 32:329–347

    Article  Google Scholar 

  7. Soliman E, Ismail F (1997) Chatter suppression by adaptive speed modulation. Int J Mach Tools Manuf 37:355–369

    Article  Google Scholar 

  8. Tsao T, McCarthy M, Kapoor SG (1993) A new approach to stability analysis of variable speed machining systems. Int J Mach Tools Manuf 33(6):791–808

    Article  Google Scholar 

  9. Lin SC, DeVor RE, Kapoor SG (1990) The effects of variable speed cutting on vibration control in face milling. ASME J Eng Ind 112:1–11

    Article  Google Scholar 

  10. Yilmaz A, AL-Regib E, Ni J (2002) Machine tool chatter suppression by multi-level random spindle speed variation. J Manuf Sci Eng 124:208–216

    Article  Google Scholar 

  11. Altintas Y, Engin S, Budak E (1998) Analytical stability prediction and design of variable pitch cutters. ASME Int Mech Eng Congr Expo, Anaheim, California, pp. 141–148

  12. Tarng YS, Kao JY, Lee EC (2000) Chatter suppression in turning operations with tuned vibration absorber. J Mater Process Technol 105(1):55–60

    Article  Google Scholar 

  13. Rivin EI, Kang H (1992) Enhancement of dynamic stability of cantilever tooling structures. Int J Mach Tools Manuf 32(4):539–561

    Article  Google Scholar 

  14. Ema S, Marui E (2000) Suppression of chatter vibration of boring tools using impact dampers. Int J Mach Tools Manuf 40(8):1141–1156

    Article  Google Scholar 

  15. Mei C, Cherng JG, Wang Y (2006) Active control of regenerative chatter during metal cutting process. J Manuf Sci Eng 128:346–349

    Article  Google Scholar 

  16. Wang Y (2003) Adaptive control for frictional and impact chatter in metal cutting via piezoelectric actuator. M.S. thesis, Dept. Mech. Ind. Eng., Concordia Univ., Montreal, Quebec, Canada

  17. Zhu WH, Jun MB, Altintas Y (2001) A fast tool servo design for precision turning of shafts on conventional CNC lathes. Int J Mach Tools Manuf 41:953–965

    Article  Google Scholar 

  18. Pagliarulo P, Kuhnen H, May C, Janocha H (2004) Tunable magnetostrictive dynamic vibration absorber. Proceedings of the 9th International Conference on New Actuators pp. 367–370

  19. Liu D, Sutherland JW, Moon KS, Sturos TJ, Kanizar WL (1998) Surface texture improvement in the turning process via application of magnetostrictive actuated tool holder. J Dyn Syst Meas Control 120:193–199

    Article  Google Scholar 

  20. Tewani SG, Rouch KE, Walcatt BL (1995) A study of cutting process stability of a boring bar with active dynamic absorber. Int J Mach Tools Manuf 35:91–108

    Article  Google Scholar 

  21. Dyke SJ, Spencer BF, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5(5):565–575

    Article  Google Scholar 

  22. Yoshioka H, Ramallo JC, Spencer BF (2002) Smart base isolation strategies employing magnetorheological dampers. J Eng Mech 128(5):540–551

    Article  Google Scholar 

  23. Ok SY, Kim DS, Park KS, Koh HM (2007) Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers. J Eng Struct 29:776–788

    Article  Google Scholar 

  24. Moon SJ, Bergman LA, Voulgaris PG (2003) Sliding mode control of cable-stayed bridge subjected to seismic excitation. J Eng Mech 129(1):71–78

    Article  Google Scholar 

  25. Yao GZ, Yap FF, Chen G, Li WH, Yeo SH (2002) MR damper and its application for semi-active control of vehicle suspension system. Mechatronics 12:963–973

    Article  Google Scholar 

  26. Yu M, Dong XM, Choi SB, Liao CR (2009) Human simulated intelligent control of vehicle suspension system with MR dampers. J Sound Vib 319(3):753–767

    Article  Google Scholar 

  27. Du H, Sze KY, Lam J (2005) Semi-active H control of vehicle suspension with magneto-rheological dampers. J Sound Vib 283:981–996

    Article  Google Scholar 

  28. Zapateiro M, Pozo F, Karimi HR, Luo N (2012) Semiactive control methodologies for suspension control with magnetorheological dampers. IEEE/ASME Trans Mechatron 17(2):370–380

    Article  Google Scholar 

  29. Aydar G (2006) A New Magneto-rheological Fluid (MRF) Washing machine damper and a novel two-way-controllable MRF valve. M.S. thesis, Dept. Mech. Eng., Univ. Nevada, Reno, Nevada

  30. Bulea TC, Kobetic R, To CS, Audu ML, Schnellenberger JR, Triolo RJ (2012) A variable impedance knee mechanism for controlled stance flexion during pathological gait. IEEE/ASME Trans Mechatron 15(5):822–832

    Article  Google Scholar 

  31. Case D, Taheri B, Richer E (2013) Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE/ASME Trans Mechatron 18(1):96–103

    Article  Google Scholar 

  32. Choi YT, Wereley NM (2008) Shock isolation systems using magnetorheological dampers. ASME J Vib Acoust 130:024503-1–024503-6

    Article  Google Scholar 

  33. Shafer AS, Kermani MR (2011) On the feasibility and suitability of MR fluid clutches in human-friendly manipulators. IEEE/ASME Trans Mechatron 16(6):1073–1082

    Article  Google Scholar 

  34. Spencer BF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech 123(3):230–238

    Article  Google Scholar 

  35. Fallah MS, Bhat RB, Xie WF (2012) Optimized control of semiactive suspension systems using H robust control theory and current signal estimation. IEEE/ASME Trans Mechatron 17(4):767–778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Behbahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajedi Pour, D., Behbahani, S. Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int J Adv Manuf Technol 83, 421–428 (2016). https://doi.org/10.1007/s00170-015-7503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7503-6

Keywords

Navigation