Skip to main content
Log in

Error map construction and compensation of a NC lathe under thermal and load effects

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermally induced errors and load-induced errors are two key factors affecting the accuracy of machine tools. This paper proposes a strategy to build an error map of a machine tool by considering both thermal and load effects. A moderation model is developed to analyze the positioning errors with thermal effects, and a Fourier series model is used to fit the straightness errors. Based on actual cutting tests, relationships between cutting forces and motor currents are established. A load test is conducted in which a pushing cylinder is used to simulate actual cutting forces. The changes in error motions under different loads are obtained. An experimental verification is conducted on an NC lathe, whose error map is generated by integrating thermal and load effects. As actual cutting results show, when thermal and load effects are simultaneously compensated, the machining accuracy increases by 10 % as compared with when only thermal effects are compensated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  2. Yang H, Ni J (2003) Dynamic modeling for machine tool thermal error compensation. J Manuf Sci E-T ASME 25(2):245–254

    Article  MATH  Google Scholar 

  3. Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689

    Article  Google Scholar 

  4. Lin ZC, Chang JS (2007) The building of spindle thermal displacement model of high speed machine center. Int J Adv Manuf Technol 34(5–6):556–566

    Article  Google Scholar 

  5. Li Y, Zhao W, Wu W, Lu B, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

  6. Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  7. Zhang J, Feng P, Chen C, Yu D, Wu Z (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527

    Article  Google Scholar 

  8. Zhang Y, Yang JG, Xiang ST, Xiao HX (2013) Volumetric error modeling and compensation considering thermal effect on five-axis machine tools. Proc IMechE, Part C: J Mech Eng Sci 227(5):1102–1115

    Article  Google Scholar 

  9. Liu YL, Lu Y, Gao D, Hao ZP (2013) Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis. Int J Adv Manuf Technol 69(9–12):2735–2745

    Article  Google Scholar 

  10. Furukawa Y, Moronuki N (1987) Contact deformation of a machine tool slideway and its effect on machining accuracy: vibration, control engineering, engineering for industry. JSME I J: Bull JSME 30(263):868–874

    Google Scholar 

  11. Yang S, Yuan J, Ni J (1997) Real-time cutting force induced error compensation on a turning center. Int J Mach Tools Manuf 37(11):1597–1610

    Article  Google Scholar 

  12. Wu H, Chen HJ, Meng P, Yang JG (2010) Modelling and real-time compensation of cutting-force-induced error on a numerical control twin-spindle lathe. Proc I MechE Part B: J Eng Manuf 224(4):567–577

    Article  Google Scholar 

  13. Fan KC, Chen HM, Kuo TH (2012) Prediction of machining accuracy degradation of machine tools. Precis Eng 36(2):288–298

    Article  Google Scholar 

  14. Xiang ST, Zhu XL, Yang JG (2014) Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests. Proc I MechE Part C: J Mech Eng Sci 228(18):3381–3394

    Article  Google Scholar 

  15. Lu YX, Islam MN (2012) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62(9–12):1071–1085

    Article  Google Scholar 

  16. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  17. Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum

  18. Durand RM, Sharma S, Gur-Arie O (1981) Identification and analysis of moderator variables. J Mark Res 18(3):291–300

    Article  Google Scholar 

  19. Uriarte L, Zatarain M, Axinte D, Yague-Fabra J, Ihlenfeldt S, Eguia J, Olarra A (2013) Machine tools for large parts. CIRP Ann Manuf Technol 62(2):731–750

    Article  Google Scholar 

  20. Ekinci TO, Mayer JRR (2007) Relationships between straightness and angular kinematic errors in machines. Int J Mach Tools Manuf 47(12–13):1997–2004

    Article  Google Scholar 

  21. Liao JS, Lai JM, Chieng WH (1997) Modeling and analysis of nonlinear guideway for double-ball bar (DBB) measurement and diagnosis. Int J Mach Tools Manuf 37(5):687–707

    Article  Google Scholar 

  22. Lee JH, Yang SH (2005) Measurement of geometric errors in a miniaturized machine tool using capacitance sensors. J Mater Process Tech 164–165:1402–1409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitong Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Yang, J. Error map construction and compensation of a NC lathe under thermal and load effects. Int J Adv Manuf Technol 79, 645–655 (2015). https://doi.org/10.1007/s00170-015-6852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6852-5

Keywords

Navigation