Skip to main content
Log in

Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper describes a three-dimensional numerical model based on finite volume method to simulate heat transfer and fluid flow in laser–tungsten inert gas (TIG) hybrid welding process. To simplify the model and reduce the calculation time, keyhole dynamics are not considered; instead, a new modified volumetric heat source model is presented for the laser source to take into account the effect of the keyhole on the heat transfer into the workpiece. Due to the presence of arc current, an appropriate electromagnetic model based on the Maxwell equations are also solved to calculate electromagnetic forces in the weld pool. The results of computer simulation, including temperature, current density, electromagnetic, and melted material velocity field, are presented here. Furthermore, several dimensionless numbers are employed to recognize the importance of fluid flow driving forces in the weld pool. It is deduced that the fluid flow has an important effect on the weld pool shape. It is also founded that among the driving forces, Marangoni force is dominant fluid force in the weld pool. Besides, calculated results of hybrid welding process are compared with those of TIG and laser welding processes. The weld pool depth is relatively the same, but the width of the weld pool is highly larger in hybrid welding than lone laser welding. Eventually, the presented model is validated by comparison between calculated and experimental weld pool shape. It is founded that there is a good agreement as the capability of this model can be proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagger C, Olsen FO (2005) Review of laser hybrid welding. J Laser Appl 17(1):2–14. doi:10.2351/1.1848532

    Article  Google Scholar 

  2. Mahrle A, Beyer E (2006) Hybrid laser beam welding—classification, characteristics, and applications. J Laser Appl 18(3):169–180. doi:10.2351/1.2227012

    Article  Google Scholar 

  3. Ribic B, Rai R, DebRoy T (2008) Numerical simulation of heat transfer and fluid flow in GTA/laser hybrid welding. Sci Technol Weld Join 13(8):683–693. doi:10.1179/136217108x356782

    Article  Google Scholar 

  4. Ribic B, Palmer TA, DebRoy T (2009) Problems and issues in laser–arc hybrid welding. Int Mater Rev 54(4):223–244. doi:10.1179/174328009x411163

    Article  Google Scholar 

  5. Gao M, Zeng X, Hu Q, Yan J (2009) Laser–TIG hybrid welding of ultra-fine grained steel. J Mater Process Technol 209(2):785–791. doi:10.1016/j.jmatprotec.2008.02.062

    Article  Google Scholar 

  6. Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminium alloy using a fiber laser. Procedia CIRP 12:151–156. doi:10.1016/j.procir.2013.09.027

    Article  Google Scholar 

  7. Möller F, Thomy C (2013) Interaction effects between laser beam and plasma arc in hybrid welding of aluminum. Phys Procedia 41:81–89. doi:10.1016/j.phpro.2013.03.054

    Article  Google Scholar 

  8. Maletta C, Falvo A, Furgiuele F, Barbieri G, Brandizzi M (2009) Fracture behaviour of nickel–titanium laser welded joints. J Mater Eng Perform 18(5–6):569–574. doi:10.1007/s11665-009-9351-8

    Article  Google Scholar 

  9. Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4 V, 304 L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753–5766

    Article  Google Scholar 

  10. Cho W-I, Na S-J, Thomy C, Vollertsen F (2012) Numerical simulation of molten pool dynamics in high power disk laser welding. J Mater Process Technol 212(1):262–275. doi:10.1016/j.jmatprotec.2011.09.011

    Article  Google Scholar 

  11. Han S-W, Cho W-I, Na S-J, Kim C-H (2013) Influence of driving forces on weld pool dynamics in GTA and laser welding. Weld World 57(2):257–264. doi:10.1007/s40194-012-0020-4

    Article  Google Scholar 

  12. Chen YB, Lei ZL, Li LQ, Wu L (2006) Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci Technol Weld Join 11(4):403–411. doi:10.1179/174329306X129535

    Article  Google Scholar 

  13. Faraji AH, Bahmani A, Goodarzi M, Seyedein SH, Shbani MO (2014) Numerical and experimental investigations of weld pool geometry in GTA welding of pure aluminum. J Cent South Univ 21:20–26. doi:10.1007/s11771-014-1910-y

    Article  Google Scholar 

  14. Faraji A, Goodarzi M, Seyedein S, Zamani M (2014) Experimental study and numerical modeling of arc and weld pool in stationary GTA welding of pure aluminum. Int J Adv Manuf Technol:1–13. doi:10.1007/s00170-014-5651-8

  15. Dong W, Lu S, Li D, Li Y (2011) GTAW liquid pool convections and the weld shape variations under helium gas shielding. Int J Heat Mass Transf 54(7–8):1420–1431. doi:10.1016/j.ijheatmasstransfer.2010.07.069

    Article  MATH  Google Scholar 

  16. Traidia A, Roger F (2011) Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding. Int J Heat Mass Transf 54(9–10):2163–2179. doi:10.1016/j.ijheatmasstransfer.2010.12.005

    Article  MATH  Google Scholar 

  17. Dong W, Lu S, Li D, Li Y (2010) Modeling of the weld shape development during the autogenous welding process by coupling welding arc with weld pool. J Mater Eng Perform 19(7):942–950. doi:10.1007/s11665-009-9570-z

    Article  Google Scholar 

  18. Zhang W, Kim CH, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding—part II: application to fillet welding of mild steel. J Appl Phys 95(9):5220–5229. doi:10.1063/1.1699486

    Article  Google Scholar 

  19. Goodarzi M, Choo R, Takasu T, Toguri JM (1998) The effect of the cathode tip angle on the gas tungsten arc welding arc and weld pool: II. The mathematical model for the weld pool. J Phys D Appl Phys 31(5):569–583

    Article  Google Scholar 

  20. Rai R, Kelly SM, Martukanitz RP, DebRoy T (2008) A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metall Mat Trans A 39(1):98–112. doi:10.1007/s11661-007-9400-6

    Article  Google Scholar 

  21. Rai R, Roy GG, DebRoy T (2007) A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. J Appl Phys 101(5):1–11. doi:10.1063/1.2537587

    Article  Google Scholar 

  22. Moradi M, Ghoreishi M, Frostevarg J, Kaplan AFH (2013) An investigation on stability of laser hybrid arc welding. Opt Lasers Eng 51(4):481–487. doi:10.1016/j.optlaseng.2012.10.016

    Article  Google Scholar 

  23. Brandizzi M, Satriano AA, Sorgente D, Tricarico L (2013) Laser–arc hybrid welding of Ti6Al4V titanium alloy: mechanical characterization of joints and gap tolerance. Weld Int 27(2):113–120. doi:10.1080/09507116.2011.600045

    Article  Google Scholar 

  24. Tani G, Campana G, Fortunato A, Ascari A (2007) The influence of shielding gas in hybrid LASER–MIG welding. Appl Surf Sci 253(19):8050–8053. doi:10.1016/j.apsusc.2007.02.144

    Article  Google Scholar 

  25. Piekarska W, Kubiak M (2011) Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. Int J Heat Mass Transf 54(23–24):4966–4974. doi:10.1016/j.ijheatmasstransfer.2011.07.010

    Article  MATH  Google Scholar 

  26. Piekarska W, Kubiak M (2013) Modeling of thermal phenomena in single laser beam and laser—arc hybrid welding processes using projection method. Appl Math Model 37(4):2051–2062. doi:10.1016/j.apm.2012.04.052

    Article  MathSciNet  Google Scholar 

  27. Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process. J Mater Process Technol 211(6):1102–1111. doi:10.1016/j.jmatprotec.2011.01.012

    Article  Google Scholar 

  28. Kong F, Kovacevic R (2010) 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint. J Mater Process Technol 210(6–7):941–950. doi:10.1016/j.jmatprotec.2010.02.006

    Article  Google Scholar 

  29. Gao Z, Ojo OA (2012) Modeling analysis of hybrid laser—arc welding of single-crystal nickel-base superalloys. Acta Mater 60(6–7):3153–3167. doi:10.1016/j.actamat.2012.02.021

    Article  Google Scholar 

  30. Xu GX, Wu C, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser + pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57(1–4):245–255. doi:10.1007/s00170-011-3274-x

    Article  Google Scholar 

  31. Le Guen E, Carin M, Fabbro R, Coste F, Le Masson P (2011) 3D heat transfer model of hybrid laser Nd:Yag-MAG welding of S355 steel and experimental validation. Int J Heat Mass Transf 54(7–8):1313–1322. doi:10.1016/j.ijheatmasstransfer.2010.12.010

    Article  MATH  Google Scholar 

  32. P-q X, Bao C-m, F-g L, C-w M, J-p H, H-c C, Yang S-l (2011) Numerical simulation of laser–tungsten inert arc deep penetration welding between WC–Co cemented carbide and invar alloys. Int J Adv Manuf Technol 53(9–12):1049–1062. doi:10.1007/s00170-010-2898-6

    Google Scholar 

  33. Zhou J, Tsai HL (2008) Modeling of transport phenomena in hybrid laser—MIG keyhole welding. Int J Heat Mass Transf 51(17–18):4353–4366. doi:10.1016/j.ijheatmasstransfer.2008.02.011

    Article  MATH  Google Scholar 

  34. Cho JH, Na SJ (2009) Three-dimensional analysis of molten pool in GMA—laser hybrid welding. Weld J (Miami, Fla) 88(2):35s–43s

    Google Scholar 

  35. Cho WI, Na SJ, Cho MH, Lee JS (2010) Numerical study of alloying element distribution in CO2 laser—GMA hybrid welding. Comput Mater Sci 49(4):792–800

    Article  Google Scholar 

  36. Abderrazak K, Bannour S, Mhiri H, Lepalec G, Autric M (2009) Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy. Comput Mater Sci 44(3):858–866. doi:10.1016/j.commatsci.2008.06.002

    Article  Google Scholar 

  37. Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  38. Roy GG, Elmer JW, DebRoy T (2006) Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. J Appl Phys 100(3):1–7. doi:10.1063/1.2214392

    Article  Google Scholar 

  39. He X, Elmer JW, DebRoy T (2005) Heat transfer and fluid flow in laser microwelding. J Appl Phys 97(8):\084909. doi:10.1063/1.1873032

    Google Scholar 

  40. Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding—part I: numerical model of fillet welding. J Appl Phys 95(9):5210–5219. doi:10.1063/1.1699485

    Article  Google Scholar 

  41. Lago F, Gonzalez JJ, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part I. The two-dimensional model. J Phys D: Appl Phys 37(6):883–897

    Article  Google Scholar 

  42. Lu F, Yao S, Lou S, Li Y (2004) Modeling and finite element analysis on GTAW arc and weld pool. Comput Mater Sci 29(3):371–378. doi:10.1016/j.commatsci.2003.10.009

    Article  Google Scholar 

  43. Gonzalez JJ, Lago F, Freton P, Masquère M, Franceries X (2005) Numerical modelling of an electric arc and its interaction with the anode: part II. The three-dimensional model—influence of external forces on the arc column. J Phys D Appl Phys 38(2):306–318

    Article  Google Scholar 

  44. Jamshidi Aval H, Farzadi A, Serajzadeh S, Kokabi AH (2009) Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. Int J Adv Manuf Technol 42(11–12):1043–1051. doi:10.1007/s00170-008-1663-6

    Article  Google Scholar 

  45. Farzadi A, Serajzadeh S, Kokabi AH (2010) Investigation of weld pool in aluminum alloys: geometry and solidification microstructure. Int J Therm Sci 49(5):809–819. doi:10.1016/j.ijthermalsci.2009.11.007

    Article  Google Scholar 

  46. Cantin GMD, Francis JA (2005) Arc power and efficiency in gas tungsten arc welding of aluminium. Sci Technol Weld Join 10(2):200–210. doi:10.1179/174329305X37033

    Article  Google Scholar 

  47. Tsai NS, Eagar TW (1985) Distribution of the heat and current fluxes in gas tungsten arcs. MTB 16(4):841–846. doi:10.1007/bf02667521

    Article  Google Scholar 

  48. Wu CS, Gao JQ (2002) Analysis of the heat flux distribution at the anode of a TIG welding arc. Comput Mater Sci 24(3):323–327. doi:10.1016/S0927-0256(01)00254-3

    Article  MathSciNet  Google Scholar 

  49. Haiyan Z, Wenchong N, Bin Z, Yongping L, Masaru K, Takashi I (2011) Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding. J Phys D Appl Phys 44(48):485302

    Article  Google Scholar 

  50. Farzadi A, Serajzadeh S, Kokabi AH (2008) Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum. Int J Adv Manuf Technol 38(3–4):258–267. doi:10.1007/s00170-007-1106-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, A.H., Goodarzi, M., Seyedein, S.H. et al. Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082. Int J Adv Manuf Technol 77, 2067–2082 (2015). https://doi.org/10.1007/s00170-014-6589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6589-6

Keywords

Navigation