Skip to main content
Log in

Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The objective of this research is to solve the multi-response parameter optimization problems of green manufacturing. A combination of gray relational analysis (GRA) associated with principal component analysis (PCA) method has been developed and has optimized the process parameters of green electrical discharge machining (EDM). The major performance characteristics selected are process time, relative tool wear ratio, process energy, concentration of aerosol, and dielectric consumption. The corresponding machining parameters are peak current, pulse duration, dielectric level, and flushing pressure. Initially, Taguchi (L9) orthogonal array has been used to perform the experimental runs and the optimal process parameters using the GRA approach. The weighting values corresponding to various performance characteristics are determined using PCA. Thereafter, analysis of variance (ANOVA) is applied to determine the relative significant parameter and percentage of contribution of machining parameters; the peak current is the most influencing parameter having 52.87 % of contribution followed by flushing pressure, dielectric level, and pulse duration with 22.00, 21.52, and 3.55 %, respectively. Finally, multiple regression analysis is performed to determine the relationship between machining parameters and performance characteristics. The Fuzzy-TOPSIS and VIKOR methodologies have been used to compare the results of the proposed methodology, and the optimum process parameters obtained are peak current (4.5 A), pulse duration (261 μs), dielectric level (80 mm), and flushing pressure (0.3 kg/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheng P, Srinivasan M (1995) Multi-objective process planning in environmentally conscious manufacturing: a feature-based approach. CIRP Ann Manuf Technol 44(1):433–437

    Article  Google Scholar 

  2. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tool Manuf 47(7–8):1214–1228

    Article  Google Scholar 

  3. ISO 14040 (1997) Environmental management -life cycle assessment- principle frame work

  4. Yeo SH, Neo KG, Tan HC (1998) Assessment of health hazard in production of printed paper packages. Int J Adv Manuf Technol 14:376–384

    Article  Google Scholar 

  5. Melngk SA, Smith RT (1996) Green manufacturing. SME, Dearborn

    Google Scholar 

  6. Liu F, Zhang H, Cheng XH (1999) A decision-making framework model for green manufacturing and the case study. J Mech Eng 35(5):11–15

    Google Scholar 

  7. Kung KY, Horng JT, Chiang KT (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40(1–2):95–104

    Article  Google Scholar 

  8. Doniavi A, Eskandarzade M, Abdi A, Totonchi A (2008) Empirical modeling of EDM parameters using grey relational analysis. Asian J Sci Res 1(5):502–509

    Article  Google Scholar 

  9. Sohani MS, Gaitonde V, Siddeswarappa B, Deshpande A (2009) Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process. Int J Adv Manuf Technol 45(11–12):1131–1145

    Article  Google Scholar 

  10. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  11. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40(3–4):316–323

    Article  Google Scholar 

  12. El-Taweel T (2009) Multi-response optimization of EDM with Al-Cu-SiC P/M composite electrode. Int J Adv Manuf Technol 44(1):100–113

    Article  Google Scholar 

  13. Pradhan MK, Biswas CK (2010) Neuro-fuzzy and neural network based prediction of various responses in electrical discharge machining of AISI D2 steel. J Adv Manuf Technol 50(5–8):591–610

    Article  Google Scholar 

  14. Mandal D, Pal SK, Saha P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186(1–3):154–162

    Article  Google Scholar 

  15. Dvivedi A, Kumar P, Singh I (2008) Experimental investigation and optimisation in EDM of Al 6063 SiCp metal matrix composite. Int J Mach Mach Mater 3(3–4):293–308

    Google Scholar 

  16. Kanagarajan D, Karthikeyan R, Palanikumar K, Sivaraj P (2008) Influence of process parameters on electric-discharge machining of WC/30 % Co composites. Proc Inst Mech Eng B J Eng Manuf 222(7):807–815

    Article  Google Scholar 

  17. Chiang K (2008) Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O 3 + TiC mixed ceramic. Int J Adv Manuf Technol 37(5–6):523–533

    Article  Google Scholar 

  18. Kuppan P, Rajadurai A, Narayanan S (2007) Influence of EDM process parameters in deep whole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84

    Google Scholar 

  19. Pradhan MK, Biswas CK (2011) Multi-response optimisation of EDM AISI D2 tool steel using response surface methodology. Int J Mach Mach Mater 9(1–2):66–85

    Google Scholar 

  20. Deng JL (1989) Introduction to grey system. J Grey Syst 1(1):1–24

    MathSciNet  MATH  Google Scholar 

  21. Wang Z, Zhu L, Wu JH (1996) Grey relational analysis of correlation of errors in measurement. J Grey Syst 8(1):73–78

    Google Scholar 

  22. Zhu F, Yi M, Ma L, Du J (1996) The grey relational analysis of the dielectric constant and others. J Grey Syst 8(3):287–290

    Google Scholar 

  23. Tan X, Yang Y, Deng J (1998) Grey relational analysis factors in hypertensive with cardiac insufficiency. J Grey Syst 10(1):75–80

    Google Scholar 

  24. Singh PN, Raghukandan K, Pai BC (2004) Optimization by Grey relational analysis of EDM parameters on machining Al-10 % SiCP composites. J Mater Process Technol 155–156:1658–1661

    Article  Google Scholar 

  25. Chiang KT, Chang FP (2006) Optimization of WEDM process of particle reinforced material with multiply performance characteristics using grey relational analysis. J Mater Process Technol 180(1–3):96–101

    Article  Google Scholar 

  26. Lin YC, Lee HS (2009) Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int J Adv Manuf Technol 42(11–12):1052–1064

    Article  Google Scholar 

  27. Caydas U, Hascalik A (2008) Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt Laser Technol 40(7):987–994

    Article  Google Scholar 

  28. Tosun N (2006) Determination of optimum parameters for multi performance characteristics in drilling by using grey relational analysis. Int J Adv Manuf Technol 28(5–6):450–455

    Article  Google Scholar 

  29. Yang YY, Shie JR, Huang CH (2006) Optimization of dry machining parameters for high purity graphite in end-milling process. Mater Manuf Process 21(8):832–837

    Article  Google Scholar 

  30. Kao PS, Hocheng H (2003) Optimization of electrochemical polishing of stainless steel by grey relational analysis. J Mater Process Technol 140(1–3):255–259

    Article  Google Scholar 

  31. Palanikumar K, Karunamoorthy L, Karthilesyan R (2006) Multiple performance optimization of machining parameters on the machining of GFRP composites using carbide (K10) tool based on the Taguchi Method with Fuzzy Logics. Met Mater Int 12(6):483–491

    Article  Google Scholar 

  32. Pan LK, Wang CC, Wei SL, Sher HF (2007) Optimizing multiple quality characteristics via Taguchi method-based Grey analysis. J Mater Process Technol 182(1–3):107–116

    Article  Google Scholar 

  33. Chang CK, Lu HS (2007) Design optimization of cutting parameters for side milling operations with multiple performance characteristics. Int J Adv Manuf Technol 32(1–2):18–26

    Article  Google Scholar 

  34. Lin J, Lin C (2002) The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int J Mach Tools Manuf 42(2):23–7244

    Article  Google Scholar 

  35. Rajyalakshmi G, Venkata Ramaiah P (2013) Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. Int J Adv Manuf Technol 69(5–8):1249–1262

    Article  Google Scholar 

  36. Tarng YS, Juang SC, Chang CH (2002) The use of grey-base Taguchi methods to determine submerged arc welding process parameters in hard facing. J Mater Process Technol 128(1–3):1–6

    Article  Google Scholar 

  37. Pradhan MK (2013) Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis. Int J Adv Manuf Technol 67(9–12):2051–2062

    Article  Google Scholar 

  38. Azhiri RB, Teimouri R, Baboly GM, Leseman Z (2013) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1–4):279–295

    Google Scholar 

  39. Ranganathan S, Senthilvelan T (2011) Multi-response optimization of machining parameters in hot turning using grey analysis. Int J Adv Manuf Technol 56(5–8):455–462

    Article  Google Scholar 

  40. Tang L, Du YT (2014) Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization. Int J Adv Manuf Technol 70(1–4):469–475

    Article  Google Scholar 

  41. Jean MD, Tsai JS (2004) Intelligent designs of experiment for multiple characteristics optimizing a small-scale aquaculture environment. J Technol 19(4):349–357

    Google Scholar 

  42. Peng Z, Kirk TB (1999) Wear particle classification in a fuzzy grey system. Wear 225–229(2):1238–1247

    Article  Google Scholar 

  43. Sivapirakasam SP, Jose M, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl 38(7):8370–8374

    Article  Google Scholar 

  44. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Manag Ser 62:559–572

    Article  MATH  Google Scholar 

  45. Hotelling H (1993) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  46. Fung CP, Kang PC (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principal component analysis. J Mater Process Technol 170(3):602–610

    Article  Google Scholar 

  47. Su CT, Tong LI (1997) Multi-response robust design by principal component analysis. Total Qual Manag 8(6):409–416

    Article  Google Scholar 

  48. Tong LI, Wang CH (2002) Multi-response optimisation using principal component analysis and grey relational analysis. Int J Ind Eng 9:343–350

    Google Scholar 

  49. Wu FC (2005) Optimisation of correlated multiple quality characteristics using desirability function. Qual Eng 17(1):119–126

    Article  Google Scholar 

  50. Liao HC (2006) Multi-response optimization using weighted principal component. Int J Adv Manuf Technol 27(7–8):720–725

    Article  Google Scholar 

  51. Tong LI, Wang CH, Chen HC (2005) Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution. Int J Adv Manuf Technol 27(3–4):407–414

    Article  Google Scholar 

  52. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  53. Roy B (1990) Decision-aid and decision-making. Eur J Oper Res 45:324–331

    Article  MathSciNet  Google Scholar 

  54. Caliskan H, Kursuncu B, Kurbanoglu C, Guven SY (2013) Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater Des 45:473–479

    Article  Google Scholar 

  55. Kumar R, Jagadish, Ray A (2013) Selection of material: a multi-objective decision making approach. Proceeding of ICIE-2013 international conference on industrial engineering 162–165

  56. Kumar R, Jagadish, Ray A (2014) Selection of cutting tool materials: a holistic approach. Presented at the 1st international conference on mechanical engineering emerging trends for sustainability 447–452

  57. Saket S, Purbey V, Jagadish, Ray A (2014) Multi attributes decision making for mobile phone selection. Int J Res Eng Technol 03(03):497–501

    Google Scholar 

  58. Emma M, Kieran S, Vida M (2013) An assessment of sustainable housing affordability using a multiple criteria decision making method. Omega 41(2):270–279

    Article  Google Scholar 

  59. Tan XC, Liu F, Cao HJ, Zhang H (2002) A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J Mater Process Technol 129(1–3):467–470

    Article  Google Scholar 

  60. Yeo SH, New AK (1999) A method for green process planning in EDM. Int J Adv Manuf Technol 15(4):287–291

    Article  Google Scholar 

  61. Abbas NM, Yusoff N, Wahab RM (2012) Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Proce Eng 41:1684–1688

    Article  Google Scholar 

  62. Kumar R, Kumar R, Soni G, Chhabra S (2013) Optimization of process parameters during CNC turning by using AHP & VIKOR method. Int J Eng Res Technol 2(12):2278-018

    Google Scholar 

  63. Jagadish, Ray A (2014) Green cutting fluid selection using MOOSRA method. Int J Res Eng Technol 03(03):559–563

    Google Scholar 

  64. Jagadish, Ray A (2014) Multi-objective optimization of green EDM: an integrated theory. J Inst Eng India Ser C. doi:10.1007/s40032-014-0142-0

    Google Scholar 

  65. Jagadish, Ray A (2014) Green cutting fluid selection using multi-attribute decision making approach. J Inst Eng India Ser C. doi:10.1007/s40032-014-0126-0

    Google Scholar 

  66. Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53:736–758

    Article  Google Scholar 

  67. Kumar S, Satsangi PS, Prajapati DR (2011) Optimization of green sand casting process parameters of a foundry by using Taguchi’s method. Int J Adv Manuf Technol 55:23–34

    Article  Google Scholar 

  68. Choi ACK, Kaebernick H, Lai WH (1997) Manufacturing process modeling for environmental impact assessment. J Mater Process Technol 70(1–3):231–238

    Article  Google Scholar 

  69. Yadav SK, Patel SK (2013) Optimization of green electro-discharge machining using VIKOR. Dissertation, National Institute of Technology Rourkela

  70. Aminollah M, Alireza FT, Emanian E, Karimi D (2008) A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analyses. Int J Adv Manuf Technol 39:64–73

    Article  Google Scholar 

  71. Chattopadhyay KD, Verma S, Satsangi PS, Sharma PC (2009) Development of empirical model for different process parameters during rotary electrical discharge machining of copper–steel (EN-8) system. J Mater Process Technol 209:1454–1465

    Article  Google Scholar 

  72. Vishwakarma M, Parashar V, Khare VK (2012) optimization and regression analysis of surface roughness for electric discharge machining of en-19 alloy steel using tungsten copper electrode with design of experiments. Int J Adv Sci Eng Technol 1(2):43–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadish, Ray, A. Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87, 1299–1311 (2016). https://doi.org/10.1007/s00170-014-6372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6372-8

Keywords

Navigation