Skip to main content
Log in

Numerical and experimental investigation of process parameters in non-isothermal forward extrusion of Ti–6Al–4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ti–6Al–4V is the most common Ti alloy that may be worked at supra or subtransus temperatures, conventionally or isothermally. In this article, the effect of extrusion process parameters and die geometry on the extrusion force and adiabatic temperature rise is investigated. The process is considered to be non-isothermal. The results show that the non-uniform effective strain field inside the workpiece generates more elongated grains near the surface of the extrudate. The results also indicate that the ram velocity has the highest effect on both extrusion force and adiabatic temperature rise. The study suggests that in non-isothermal extrusion of Ti–6Al–4V, die and billet temperatures have stronger effect on the extrusion force compared with the die angle. However, effect of the die angle on the adiabatic temperature rise is considerable and cannot be neglected. Effect of the billet temperature on adiabatic temperature rise is more than the effect of die angle. The simulation model and analytical results are verified by experimental investigations that shows good agreement between the corresponding results. The provided insights using the approach and the results presented in this article gives a better understanding of forward extrusion of Ti–6Al–4V material. The results can be used by the tool designers and process planners in developing the tools and the processes that gives better yield and reduces the manufacturing costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Momeni A, Abbasi SM (2010) Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Mater Des 31:3599–3604

    Article  Google Scholar 

  2. Donachie MJ (2000) Titanium: a technical guide. 2nd edn. ASM International, pp. 13-24.

  3. Semiatin SL, Seetharaman V, Weiss I (1997) The thermomechanical processing of alpha/beta titanium alloys. JOM 49(6):33–39

    Article  Google Scholar 

  4. Cai J, Li F, Liu T, Chen B, He M (2011) Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Mater Des 32:1144–1151

    Article  Google Scholar 

  5. Udagawa T, Kropp E, Altan T (1992) Investigation of metal flow and temperatures by FEM in the extrusion of Ti–6Al–4V tubes. J Mater Proc Tech 33(1):155–174

    Article  Google Scholar 

  6. Srinivasan K, Venugopal P (1993) Warm open-die extrusion of Ti–6Al–4V. J Mater Proc Tech 38(1):265–277

    Article  Google Scholar 

  7. Zhang S, Xu Y, Shang Y, Yang K, Wang Z (2001) Lubrication in hot tube extrusion of superalloys and Ti alloys. J Mater Sci Tech 17(1):113–114

    Article  MATH  Google Scholar 

  8. Li LX, Rao KP, Lou Y, Peng DS (2002) A study on hot extrusion of Ti–6Al–4V using simulations and experiments. Int J Mech Sci 44(12):2415–2425

    Article  Google Scholar 

  9. Bergamini R, Mapelli C, Venturini R (2003) Hot extrusion experiments performed on Ti–6Al–4V for the production of special cross section. Met Sci Techno 21(2):18–25

    Google Scholar 

  10. Damodaran D, Shivpuri R (2004) Prediction and control of part distortion during the hot extrusion of titanium alloys. J Mater Proc Tech 150(1):70–75

    Article  Google Scholar 

  11. Shin TJ, Lee YH, Yeom JT, Chung SH, Hong SS, Shim IO, Park NK, Lee CS, Hwang SM (2005) Process optimal design in non-isothermal backward extrusion of a titanium alloy by the finite element method. Comput Method Appl 194(36):3838–3869

    Article  MATH  Google Scholar 

  12. Zherebtsov S, Mazur A, Salishchev G, Lojkowski W (2008) Effect of hydrostatic extrusion at 600–700 °C on the structure and properties of Ti–6Al–4V alloy. Mat Sci Eng A-Struct 485(1):39–45

    Article  Google Scholar 

  13. Hu ZM, Brooks JW, Dean TA (1998) The interfacial heat transfer coefficient in hot die forging of titanium alloy. J Mech Eng Sci 212(6):485–496

    Article  Google Scholar 

  14. Li LX, Peng DS, Liu JA, Liu ZQ, Jiang Y (2000) An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test. J Mater Proc Tech 102(1):138–142

    Article  Google Scholar 

  15. Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal MH, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid Ti–6Al–4V (TA6V) alloy. Int J Thermophys 27(2):507–529

    Article  Google Scholar 

  16. Zhou J, Li L, Duszczyk J (2003) 3D FEM simulation of the whole cycle of aluminium extrusion throughout the transient state and the steady state using the updated Lagrangian approach. J Mater Proc Tech 134(3):383–397

    Article  Google Scholar 

  17. Freudenthal AM (1950) The inelastic behavior of solids. Wiley.

  18. Oyane M (1972) Criteria of ductile fracture strain. Bull JSME 15(90):1507–1513

    Article  Google Scholar 

  19. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201–217

    Article  Google Scholar 

  20. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Metals 96(1):33–39

    Google Scholar 

  21. Landre J, Pertence A, Cetlin PR, Rodrigues JMC, Martins PAF (2003) On the utilisation of ductile fracture criteria in cold forging. Finite Elem Anal Des 39(3):175–186

    Article  MATH  Google Scholar 

  22. Quan GZ, Wang FB, Liu YY, Shi Y, Zhou J (2013) Evaluation of varying ductile fracture criterion for 7075 aluminum alloy. T Nonferr Metal Soc 23(3):749–755

    Article  Google Scholar 

  23. Takuda H, Mori K, Hatta N (1999) The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol 95:116–121

    Article  Google Scholar 

  24. Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147(3):397–404

    Article  Google Scholar 

  25. Nicolaou PD, Semiatin SL (2005) An analysis of cavity growth during open-die hot forging of Ti–6Al–4V. Metall Mater Trans A 36(6):1567–1574

    Article  Google Scholar 

  26. Kukuryk M (2012) Analysis of deformation and damage evolution in hot elongation forging. Arch Metall Mater 55(2):417–424

    Google Scholar 

  27. Quan GZ, Wang FB, Liu YY, Shi Y, Zhou J (2013) Evaluation of varying ductile fracture criterion for 7075 aluminum alloy. T Nonferr Metal So 23(3):749–755

    Article  Google Scholar 

  28. Mirahmadi SJ, Hamedi M, Ajami S (2014) Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6047-5

    MATH  Google Scholar 

  29. Montgomery DC (2001) Design and Analysis of Experiments. 5th edn. John Wiley & Sons, pp. 218-276.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Javid Mirahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirahmadi, S.J., Hamedi, M. Numerical and experimental investigation of process parameters in non-isothermal forward extrusion of Ti–6Al–4V. Int J Adv Manuf Technol 75, 33–44 (2014). https://doi.org/10.1007/s00170-014-6108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6108-9

Keywords

Navigation