Skip to main content

Advertisement

Log in

A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a multi-objective mathematical formulation and a hybrid approach to solve buffer sizing and machine allocation problems simultaneously in unreliable production and assembly lines. This paper unlike prior researches assumes that time-dependent parameters of production systems are generally distributed (e.g., uniform, normal, gamma, etc.) and not only deterministic or exponential. This paper proposes a multi-objective mixed binary integer non-linear mathematical model to solve the problem of buffer sizing and machine allocation. The proposed mathematical model is capable of purchasing new machines (candidate) and also selling old machines (current available). In other words, this model compares the candidate machines to current available machines in each station based on different aspects and is capable to replace the current machines with candidate machines or to sell some of the current machines without replacement. To solve the mentioned problem, a new formulation for dealing with multi-objectiveness of the problem is proposed. This formulation generates a series of non-dominated solutions, and also, it is capable of generating a non-dominated solution between two adjacent non-dominated solutions determined by decision maker. A hybrid genetic algorithm (HGA) with a new dynamic mutation probability is proposed to solve the model. Since the proposed mathematical model and the proposed solution method are novel, the proposed HGA is compared to simple genetic algorithm and non-dominated sorting genetic algorithm (NSGA-II). The computational results indicate the effectiveness of the proposed HGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi C, Gershwin S (2009) An efficient buffer design algorithm for production line profit maximization. Int J Prod Econ 103(2):873–881. doi:10.1016/j.ijpe.2009.06.040

    Google Scholar 

  2. Massim Y, Yalaouib F, Amodeob L, Chateletc E, Zeblaha A (2010) Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization. Comput Oper Res 37(4):611–620. doi:10.1016/j.cor.2009.06.016

    Article  MATH  Google Scholar 

  3. Jeong K, Kim Y (2000) Heuristics for selecting machines and determining buffer capacities in assembly systems. Comput Ind Eng 38(3):341–360. doi:10.1016/S0360-8352(00)00045-0

    Article  Google Scholar 

  4. Ho YC, Eyler MA, Chien TT (1979) A gradient technique for general buffer storage design in a production line. Int J Prod Res 17:557–580. doi:10.1109/CDC.1978.268004

    Article  Google Scholar 

  5. Jafari MA, Shanthikumar JG (1989) Determination of optimal buffer storage capacities and optimal buffer allocation in multistage automation transfer lines. IIE Trans 21(2):130–135. doi:10.1080/07408178908966216

    Article  Google Scholar 

  6. Seong D, Chang SY, Hong Y (1995) Heuristic algorithms for buffer allocation in a production line with unreliable machines. Int J Prod Res 33(7):1989–2005

    Article  MATH  Google Scholar 

  7. Amiri M, Mohtashami A (2012) Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. Int J Adv Manuf Technol 62:371–383. doi:10.1007/s00170-011-3802-8

    Article  Google Scholar 

  8. Aksoy H, Gupta S (2011) Optimal management of remanufacturing systems with server vacations. Int J Adv Manuf Technol 54(9–12):1199–1218. doi:10.1007/s00170-010-3001-z

    Article  Google Scholar 

  9. Buzacott J (1967) Automatic transfer lines with buffer stocks. Int J Prod Res 5(3):183–200. doi:10.1080/00207546708929751

    Article  Google Scholar 

  10. Chow W (1987) Buffer capacity analysis for sequential production lines with variable processing times. Int J Prod Res 25(8):1183–1196

    Google Scholar 

  11. Gershwin S (1987) An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking. Oper Res 35(2):291–305. doi:10.1007/BFb0006317

    Article  MathSciNet  MATH  Google Scholar 

  12. Dallery Y, David R, Xie X (1988) An efficient algorithm for analysis of transfer lines with unreliable machines and finite buffers. IIE Trans 20(3):280–283. doi:10.1080/07408178808966181

    Article  Google Scholar 

  13. Huang M, Guang C, Pao L, Chou Y (2002) Buffer allocation in flow-shop-type production system with general arrival and service patterns. Comput Oper Res 29(2):103–121. doi:10.1016/S0305-0548(00)00060-5

    Article  MATH  Google Scholar 

  14. Diamantidis A, Papadopoulos C (2004) A dynamic programming algorithm for the buffer allocation problem in homogeneous asymptotically reliable serial production lines. Math Probl Eng 3:209–223. doi:10.1155/S1024123X04402014

    Article  MathSciNet  Google Scholar 

  15. Lim J, Meerkov S, Top F (1990) Homogeneous, asymptotically reliable serial production line: theory and a case study. IEEE Trans Autom Control 35(5):524–534. doi:10.1109/9.53518

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith J, Cruz F (2005) The buffer allocation problem for general finite buffer queueing networks. IIE Trans 37(4):343–365. doi:10.1080/07408170590916986

    Article  Google Scholar 

  17. Manitz M (2008) Queueing model based analysis of assembly lines with finite buffers and general services times. Comput Oper Res 35(8):2520–2536. doi:10.1016/j.cor.2006.12.016

    Article  MathSciNet  MATH  Google Scholar 

  18. Diamantidis C, Papadopoulos T (2009) Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines. Eur J Oper Res 197(2):572–580. doi:10.1016/j.ejor.2008.07.004

    Article  MATH  Google Scholar 

  19. Radhoui M, Rezg N, Chelbi A (2009) Integrated model of preventive maintenance, quality control and buffer sizing for unreliable and imperfect production systems. Int J Prod Res 47(2):389–402. doi:10.1080/00207540802426201

    Article  MATH  Google Scholar 

  20. Sabuncuoglu E, Gocgun Y (2006) Analysis of serial production lines: characterisation study and a new heuristic procedure for optimal buffer allocation. Int J Prod Res 44(13):2499–2523. doi:10.1080/00207540500465535

    Article  MATH  Google Scholar 

  21. Vergara H, Kim D (2009) A new method for the placement of buffers in serial production lines. Int J Prod Res 47(16):4437–4456. doi:10.1080/00207540801939022

    Article  MATH  Google Scholar 

  22. Romulo I, Pernando P, Valdes J (2004) Optimal buffer inventory and preventive maintenance for an imperfect production process. Int J Prod Res 42(5):959–974. doi:10.1080/00207540310001631610

    Article  Google Scholar 

  23. Colledani M, Tolio T (2011) Integrated analysis of quality and production logistics performance in manufacturing lines. Int J Prod Res 49(2):485–518. doi:10.1080/00207540903443246

    Article  Google Scholar 

  24. Hillier FS, So KC, Boling RW (1993) Notes: toward characterizing the optimal allocation of storage space in production line systems with variable processing time. Manag Sci 39(1):126–133. doi:10.1287/mnsc.39.1.126

    Article  Google Scholar 

  25. Liu CM, Sanders JL (1986) Stochastic design optimization of asynchronous flexible assembly systems. In: Stecke KE, Suri R (Eds) Proceedings of the second ORSA/TIMS conference on flexible manufacturing systems: operations research models and applications 191–201

  26. Dallery Y, Frein Y (1988) An efficient method to determine the optimal configuration of a flexible manufacturing system. Ann Oper Res 15(1):207–225. doi:10.1007/BF02186797

    Article  MATH  Google Scholar 

  27. Johri PK (1991) Engineering a circuit board assembly line for a desired capacity and flow time. J Manuf Syst 10(6):492–500. doi:10.1016/0278-6125(91)90007-O

    Article  Google Scholar 

  28. Martin GE (1994) Optimal design of production lines. Int J Product Res 32(5):989–1000. doi:10.1080/00207549408956983

    Article  MATH  Google Scholar 

  29. Chan FTS, Ng EYH (2002) Comparative evaluations of buffer allocation strategies in a serial production line. Int J Adv Manuf Technol 19(11):789–800

    Article  Google Scholar 

  30. Tripathi AK, Tiwari MK, Chan FTS (2005) Multi-agent-based approach to solve part selection and task allocation problem in flexible manufacturing systems. Int J Product Res 43(7):1313–1335

    Article  MATH  Google Scholar 

  31. Chan FTS, Swarnkar R, Tiwari MK (2005) Fuzzy goal-programming model with an artificial immune system (AIS) approach for a machine tool selection and operation allocation problem in a flexible manufacturing system. Int J Product Res 43(19):4147–4163

    Article  MATH  Google Scholar 

  32. Chan FTS, Swarnkar R (2006) Ant colony optimisation approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robot Comput Integr Manuf 22(4):353–362

    Article  Google Scholar 

  33. Chan FTS, Kumar N (2009) Effective allocation of customers to distribution centres: a multiple ant colony optimization approach. Robot Comput Integr Manuf 25(1):1–12

    Article  MathSciNet  Google Scholar 

  34. Chan FTS, Chaube A, Mohan V, Arora V, Tiwari MK (2010) Operation allocation in automated manufacturing system using GA-based approach with multifidelity models. Robot Comput Integr Manuf 26(5):526–534

    Article  Google Scholar 

  35. Chan FTS, Wong TC, Chan LY (2008) Lot streaming for product assembly in job shop environment. Robot Comput Integr Manuf 24(3):321–331

    Article  MathSciNet  Google Scholar 

  36. Chan FTS, Wong TC, Chan LY (2009) An evolutionary algorithm for assembly job shop with part sharing. Comput Ind Eng 57(3):641–651

    Article  MathSciNet  Google Scholar 

  37. Wong TC, Chan FTS, Chan LY (2009) A resource-constrained assembly job shop scheduling problem with lot streaming technique. Comput Ind Eng 57(3):983–995

    Article  MathSciNet  Google Scholar 

  38. Lavoie P, Kenne J, Gharbi A (2009) Optimization of production control policies in failure-prone homogenous transfer lines. IIE Trans 41(3):209–222. doi:10.1080/07408170802375760

    Article  Google Scholar 

  39. Kleijnen JPC, Sargent RG (2000) A methodology for fitting and validating metamodels in simulation. Eur J Oper Res 120(1):14–29. doi:10.1016/S0377-2217(98)00392-0

    Article  MATH  Google Scholar 

  40. Kleijnen JPC (1987) Statistical tools for simulation practitioners. Marcel Dekker, New York

    MATH  Google Scholar 

  41. Noguera J, Watson E (2006) Response surface analysis of a multi-product batch processing facility using a simulation meta-model. Int J Prod Econ 102(2):333–343. doi:10.1016/j.ijpe.2005.02.014

    Article  Google Scholar 

  42. Durieux S, Pierreval H (2003) Regression meta-modeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource. Int J Prod Econ 89(1):1–10

    Google Scholar 

  43. Dengiz B, Akbay KS (2000) Computer simulation of a PCB production line: meta-modeling approach. Int J Prod Econ 63(2):195–205. doi:10.1016/S0925-5273(99)00013-4

    Article  Google Scholar 

  44. Safizadeh MH (1990) Optimization in simulation: current issues and the future outlook. Nav Res Logist 37:807–825. doi:10.1002/1520-6750(199012)37:6<807::AID-NAV3220370602>3.0.CO;2-F

    Article  MATH  Google Scholar 

  45. Madu CN, Kuei CH (1994) Regression meta-modeling in computer simulation-the state of the art. Simul Pract Theory 2(1):27–41. doi:10.1016/0928-4869(94)00007-7

    Article  Google Scholar 

  46. Kleijnen JPC (1979) Regression meta-models for generalizing simulation results. IEEE Trans Syst Man Cybern 9(2):93–96. doi:10.1109/TSMC.1979.4310155

    Article  Google Scholar 

  47. Kleijnen JPC (1981) Regression analysis for simulation practioners. J Oper Res Soc 32(1):35–43

    Article  MATH  Google Scholar 

  48. Montgomery D (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  49. Zou Z, Li C (2006) Integrated and events-oriented job shop scheduling. Int J Adv Manuf Technol 29(5):551–556. doi:10.1007/BF02729108

    Article  Google Scholar 

  50. Probhaharan G, Asokan P, Ramesh P, Rajendran S (2004) Genetic-algorithm based optimal tolerance allocation using a least-cost model. Int J Adv Manuf Technol 24(9–10):647–660. doi:10.1007/s00170-003-1606-1

    Article  Google Scholar 

  51. Zhou C, Lin Z, Liu C (2008) Customer-driven product configuration optimization for assemble-to-order manufacturing enterprises. Int J Adv Manuf Technol 38(1–2):185–194. doi:10.1007/s00170-007-1089-6

    Article  Google Scholar 

  52. Zhang R, Wu C (2009) Bottleneck identification procedures for the job shop scheduling problem with application to genetic algorithms. Int J Adv Manuf Technol 42(11–12):1153–1164. doi:10.1007/s00170-008-1664-5

    Article  Google Scholar 

  53. Reid DJ (1996) Genetic algorithms in constrained optimization. Math Comput Model 23(5):87–111. doi:10.1016/0895-7177(96)00014-3

    Article  MATH  Google Scholar 

  54. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–912. doi:10.1016/j.amc.2006.10.047

    Article  MathSciNet  MATH  Google Scholar 

  55. Deep K, Singh K, Kansal M, Mohan C (2009) A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl Math Comput 212(2):505–518. doi:10.1016/j.amc.2009.02.044

    Article  MathSciNet  MATH  Google Scholar 

  56. Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230. doi:10.1016/j.amc.2007.03.046

    Article  MathSciNet  MATH  Google Scholar 

  57. Goldberg DE, Deb K (1991) A comparison of selection schemes used in genetic algorithms. In: Foundations of genetic algorithms 1, FOGA-1, 1:69–93

  58. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338. doi:10.1016/S0045-7825(99)00389-8

    Article  MATH  Google Scholar 

  59. Gen M, Cheng R (1996) Optimal design of system reliability using interval programming and genetic algorithms. Comput Ind Eng 31(1–2):237–240. doi:10.1016/0360-8352(96)00120-9

    Article  Google Scholar 

  60. Holland J (1992) Adaption in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  61. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Alabama

    MATH  Google Scholar 

  62. Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Method Appl Math Eng 191:1245–1287

    Article  MATH  Google Scholar 

  63. Deb K (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohtashami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtashami, A. A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. Int J Adv Manuf Technol 74, 1577–1593 (2014). https://doi.org/10.1007/s00170-014-6098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6098-7

Keywords

Navigation