Skip to main content
Log in

Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we exploit the sliding mode control problem for a fluid power electrohydraulic actuator (EHA) system. To characterize the nonlinearity of the friction, the EHA system is modeled as a linear system with a system uncertainty. Practically, it is assumed that the system is also subject to the load disturbance and the external noise. An integral sliding mode controller is proposed to design. The advanced techniques such as the H control and the regional pole placement are employed to derive the optimal feedback gain which can be calculated by solving a necessary and sufficient condition in the form of linear matrix inequality. A sliding mode control law is developed such that the sliding mode reaching law is satisfied. Simulation and comparison results show the effectiveness of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Utkin V, Guldner J, Shi J (1999) Sliding mode control in electromechanical systems. CRC Press, Boca Raton

    Google Scholar 

  2. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  3. Vidal-Idiarte JCE, Martinez-Salamero L, Romero A (2006) An H control strategy for switching converters in sliding-mode current control. IEEE Trans Power Electron 21(2):553–556

    Article  Google Scholar 

  4. Huang S-J, Chen H-Y (2006) Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics 16(10):607–622

    Article  Google Scholar 

  5. Sam YM, Osman JHS, Ghani MRA (2004) A class of proportional-integral sliding mode control with application to active suspension system. Syst Contr Lett 51(3–4):217–223

    Article  MATH  MathSciNet  Google Scholar 

  6. Parra-Vega V, Hirzinger G (2001) Chattering-free sliding mode control for a class of nonlinear mechanical systems. Int J Robust Nonlinear Control 11(12):1161–1178

    Article  MATH  MathSciNet  Google Scholar 

  7. Wu L, Shi P, Gao H (2010) State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans Autom Contr 55(5):1213–1219

    Article  MathSciNet  Google Scholar 

  8. Wu L, Ho DWC (2010) Sliding mode control of singular stochastic hybrid systems. Automatica 46(4):779–783

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang J-L (2008) Robust discrete-time model reference sliding-mode controller design with state and disturbance estimation. IEEE Trans Ind Electron 55(11):4065–4074

    Article  Google Scholar 

  10. Lai NO, Edwards C, Spurgeon SK (2007) On output tracking using dynamic output feedback discrete-time sliding-mode controllers. IEEE Trans Autom Contr 52(10):1975–1981

    Article  MathSciNet  Google Scholar 

  11. Choi HH (1999) On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 35(10):1707–1715

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu L, Zheng WX (2009) Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9):2120–2127

    Article  MATH  MathSciNet  Google Scholar 

  13. Sarpturk SZ, Istefanopulos Y, Kaynak O (1987) On the stability of discrete-time sliding mode control systems. IEEE Trans Autom Contr 32(10):930–932

    Article  MATH  Google Scholar 

  14. Gao W, Wang Y, Homaifa A (1995) Discrete-time variable structure control systems. IEEE Trans Ind Electron 42(2):117–122

    Article  Google Scholar 

  15. Bartoszewicz A (1996) Remarks on discrete-time variable structure control systems. IEEE Trans Ind Electron 43(1):235–238

    Google Scholar 

  16. Hui S, Źak SH (1999) On discrete-time variable structure sliding mode control. Syst Contr Lett 38(4–5):283–288

    Article  MATH  Google Scholar 

  17. Fridman E, Shaked U, Xie L (2003) Robust H filtering of linear systems with time-varying delay. IEEE Trans Autom Contr 48(1):159–165

    Article  MathSciNet  Google Scholar 

  18. Zhang H, Shi Y, Saadat Mehr A (2011) Robust weighted H filtering for networked systems with intermitted measurements of multiple sensors. Int J Adapt Control Signal Process 25(4):313–330

    Article  MATH  Google Scholar 

  19. Zhang H, Zhang X, Wang J (2014) Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation. Vehicle Syst Dyn 52(3):309–340

    Article  Google Scholar 

  20. Walker KC, Pan Y-J, Gu J (2009) Bilateral teleoperation over networks based on stochastic switching approach. IEEE/ASME Trans Mechatronics 14(5):539–554

    Article  Google Scholar 

  21. Hua C-C, Liu XP (2013) A new coordinated slave torque feedback control algorithm for network-based teleoperation systems. IEEE/ASME Trans Mechatronics 18(2):764–774

    Article  Google Scholar 

  22. Xu P, Peticca G, Wong D (2008) A technique for developing a high accuracy durability test for a light truck on a six degree-of-freedom road test simulator. Int J Vehicle Design 47(1–4):290–304

    Google Scholar 

  23. Islam S, Liu PX (2011) Robust adaptive fuzzy output feedback control system for robot manipulators. IEEE/ASME Trans Mechatronics 16(2):288–296

    Article  Google Scholar 

  24. Ye Y, Liu PX (2010) Improving trajectory tracking in wave-variable-based teleoperation. IEEE/ASME Trans Mechatronics 15(2):321–326

    Article  Google Scholar 

  25. Islam S, Liu PX (2011) PD output feedback control design for industrial robotic manipulators. IEEE/ASME Trans Mechatronics 16(1):187–197

    Article  Google Scholar 

  26. Xu P, Bernardo B, Tan K (2011) Optimal mounting design for cab vibration isolation. Int J Vehicle Design 57(2–3):292–304

    Article  Google Scholar 

  27. Huang J, Shi Y, Wu J (2012) Transparent virtual coupler design for networked haptic systems with a mixed virtual wall. IEEE/ASME Trans Mechatronics 17(3):480–487

    Article  Google Scholar 

  28. Zhang H, Shi Y, Saadat Mehr A (2012) Robust H PID control for multivariable networked control systems with disturbance/noise attenuation. Int J Robust Nonlinear Control 22(2):183–204

    Article  MATH  MathSciNet  Google Scholar 

  29. Lee C, Salapaka SM (2009) Fast robust nanopositioning—a linear-matrix-inequalities-based optimal control approach. IEEE/ASME Trans Mechatronics 14(4):414–422

    Article  Google Scholar 

  30. Elsayed A, Grimble MJ (1989) A new approach to the H design of optimal digital linear filters. IMA J Math Control Inform 6(2):233–251

    Article  MATH  MathSciNet  Google Scholar 

  31. Fallah MS, Bhat RB, Xie WF (2012) Optimized control of semiactive suspension systems using H robust control theory and current signal estimation. IEEE/ASME Trans Mechatronics 17(4):767–778

    Article  Google Scholar 

  32. Dong H, Wang Z, Gao H (2009) H fuzzy control for systems with repeated scalar nonlinearities and random packet losses. IEEE Trans Fuzzy Syst 17(2):440–450

    Article  Google Scholar 

  33. Dong H, Wang Z, Ho DWC, Gao H (2010) Robust H fuzzy output-feedback control with multiple probabilistic delays and multiple missing measurements. IEEE Trans Fuzzy Syst 18(4):712–725

    Article  Google Scholar 

  34. Habibi SR, Goldenberg AA (2000) Design of a new high-performance electrohydraulic actuator. IEEE/ASME Trans Mechatron 5(2):158–165

    Article  Google Scholar 

  35. Habibi SR, Sigh G (2000) Derivation of design requirements of optimization of a high performance hydrostatic actuation system. Int J Fluid Power 2(1):11–27

    Article  Google Scholar 

  36. Wang S, Habibi SR, Burton R, Sampson E (2008) Sliding mode control for an electrohydraulic actuator system with discontinuous non-linear friction. Proc Inst Mech Eng J Syst Control Eng 222(8):799–815

    Google Scholar 

  37. Lin Y, Shi Y, Burton R (2013) Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans Mechatron 18(1):1–10

    Article  Google Scholar 

  38. Wang Z, Yang F, Ho DWC, Liu X (2006) Robust H filtering for stochastic time-delay systems with missing measurements. IEEE Trans Signal Process 54(7):2579–2587

    Article  Google Scholar 

  39. Haddad WM, Bernstein DS (1992) Controller design with regional pole constraints. IEEE Trans Autom Contr 37(1):54–69

    Article  MATH  MathSciNet  Google Scholar 

  40. Gao H, Lam J, Xie L, Wang C (2005) New approach to mixed H 2/H filtering for polytopic discrete-time systems. IEEE Trans Signal Process 53(8):3183–3192

    Article  MathSciNet  Google Scholar 

  41. Morgan R, Ozguner O (1985) A decentralized variable structure control algorithm for robotic manipulators. IEEE Trans Autom Contr 1(1):57–65

    Google Scholar 

  42. Su W-C, Drakunov SV, Ozguner O (2000) An O(T 2) boundary layer in sliding mode for sampled-data systems. IEEE Trans Autom Contr 45(3):482–485

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang D (ed) (2013) Advanced mechatronics and MEMS devices. Springer, London

    Google Scholar 

  44. Su X, Shi P, Wu L, Song Y-D (2012) A novel approach to filter design for t-s fuzzy discrete-time systems with time-varying delay. IEEE Trans Fuzzy Syst 20(6):1114–1129

    Article  Google Scholar 

  45. Zhang H, Shi Y, Liu MX (2013) H step tracking control for networked discrete-time nonlinear systems with integral and predictive actions. IEEE Trans Ind Informat 9(1):337–345

    Article  Google Scholar 

  46. Su X, Wu L, Shi P, Song Y-D (2012) H model reduction of T-S fuzzy stochastic systems. IEEE Trans Syst Man Cybern B 42(6):1574–1585

    Article  Google Scholar 

  47. Zhang H, Shi Y, Saadat Mehr A (2012) On H filtering for discrete-time Takagi-Sugeno fuzzy systems. IEEE Trans Fuzzy Syst 20(2):396–401

    Article  MathSciNet  Google Scholar 

  48. Zhang H, Shi Y, Wang J (2014) On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans Fuzzy Syst 22(1):212–222

    Article  MathSciNet  Google Scholar 

  49. Wei L, Fang F, Shi Y (2013) Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear u-tube steam generator. IEEE Trans Contr Syst Technol. doi:10.1109/TCST.2013.2250504

    Google Scholar 

  50. Fang F, Wei L (2011) Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units. Appl Energ 88(3):814–824

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, X., Wang, J. et al. Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system. Int J Adv Manuf Technol 73, 1095–1104 (2014). https://doi.org/10.1007/s00170-014-5910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5910-8

Keywords

Navigation