Skip to main content
Log in

An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A fundamental understanding of the tribology aspects of machining processes is essential for increasing the dimensional accuracy and surface integrity of finished products. To this end, the present investigation simulates an orthogonal metal cutting using an explicit finite element code, LS-DYNA. In the simulations, a rigid cutting tool of variable rake angle was moved at different velocities against an aluminum workpiece. A damage material model was utilized for the workpiece to capture the chip separation behavior and the simultaneous breakage of the chip into multiple fragments. The friction factor at the cutting tool–workpiece interface was varied through a contact model to predict cutting forces and dynamic chip formation. Overall, the results showed that the explicit finite element is a powerful tool for simulating metal cutting and discontinuous chip formation. The separation of the chip from the workpiece was accurately predicted. Numerical results found that rake angle and friction factor have a significantly influence on the discontinuous chip formation process, chip morphology, chip size, and cutting forces when compared to the cutting velocity during metal cutting. The model was validated against the experimental and numerical results obtained in the literature, and a good agreement with the current numerical results was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Tamimi AM, El-Hossainy TM (2008) Investigating the machinability of AISI 420 stainless steel using factorial design. Mater Manuf Process 23(4):419–426. doi:10.1080/10426910801974838

    Article  Google Scholar 

  2. Cheng K (2009) Machining dynamics—fundamentals. Applications and practices. Springer, UK

    Google Scholar 

  3. Choi MS (1995) A study of shear angle relationships in shearing process on the shear plane and the rake face in orthogonal cutting. J Mech Sci Technol 9(3):385–391

    Google Scholar 

  4. Komvopoulos K, Erpenbeck SA (1991) Finite-element modeling of orthogonal metal-cutting. J Eng Ind Trans ASME 113(3):253–267

    Article  Google Scholar 

  5. Tyan T, Yang WH (1992) Analysis of orthogonal metal-cutting processes. Int J Numer Methods Eng 34(1):365–389. doi:10.1002/nme.1620340122

    Article  MATH  Google Scholar 

  6. Maity KP, Das NS (2001) A class of slipline field solutions for metal machining with coulomb friction at the chip-tool interface. J Mater Process Technol 116(2–3):278–288. doi:10.1016/s0924-0136(01)01028-7

    Article  Google Scholar 

  7. Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258(5–6):890–897. doi:10.1016/j.wear.2004.09.047

    Article  Google Scholar 

  8. Sevier M, Yang HTY, Lee S, Chandrasekar S (2007) Severe plastic deformation by machining characterized by finite element simulation. Metall Mater Trans B Proc Metall Mater Proc Sci 38(6):927–938. doi:10.1007/s11663-007-9103-9

    Google Scholar 

  9. Lovell MR, Cohen P, Menezes PL, Shankar R (2009) Tribological characterization of machining at very small contact areas. J Tribol 131(Compendex):1–7

    Google Scholar 

  10. Cristino V, Rosa P, Martins P (2013) Tribology in metal cutting. In: Nosonovsky M, Ingole SP, Kailas SV, Lovell MR, Menezes PL (eds) Tribology for scientists and engineers. Springer, New York, pp 677–728. doi:10.1007/978-1-4614-1945-7_21

    Chapter  Google Scholar 

  11. Pantalé O, Bacaria JL, Dalverny O, Rakotomalala R, Caperaa S (2004) 2D and 3D numerical models of metal cutting with damage effects. Comput Methods Appl Mech Eng 193(39–41):4383–4399. doi:10.1016/j.cma.2003.12.062

    Article  MATH  Google Scholar 

  12. Shet C, Deng XM (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105(1–2):95–109. doi:10.1016/s0924-0136(00)00595-1

    Article  Google Scholar 

  13. Arrazola PJ, Ugarte D, Montoya J, Villar A, Marya S (2005) Finite element modeling of chip formation process with ABAQUS-Explicit. Paper presented at the VIII International Conference on Computational Plasticity-COMPLAS VIII

  14. Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186(1–3):66–76. doi:10.1016/j.jmatprotec.2006.12.018

    Article  Google Scholar 

  15. Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5–6):495–513. doi:10.1016/s0045-7949(02)00023-8

    Article  Google Scholar 

  16. Shi G, Deng X, Shet C (2002) A finite element study of the effect of friction in orthogonal metal cutting. Finite Elem Anal Des 38(9):863–883. doi:10.1016/s0168-874x(01)00110-x

    Article  MATH  Google Scholar 

  17. Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863. doi:10.1016/j.finel.2011.02.016

    Article  Google Scholar 

  18. Ceretti E, Lucchi M, Altan T (1999) FEM simulation of orthogonal cutting: serrated chip formation. J Mater Process Technol 95(1–3):17–26. doi:10.1016/s0924-0136(99)00261-7

    Article  Google Scholar 

  19. Ceretti E, Fallböhmer P, Wu WT, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59(1–2):169–180. doi:10.1016/0924-0136(96)02296-0

    Article  Google Scholar 

  20. Iqbal SA, Mativenga PT, Sheikh MA (2007) Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 2: evaluation of flow stress models and interface friction distribution schemes. Proc Inst Mech Eng B J Eng Manuf 221(5):917–926. doi:10.1243/09544054jem797

    Article  Google Scholar 

  21. Ozel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46(5):518–530. doi:10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  22. Childs T (2006) Numerical experiments on the influence of material and other variables on plane strain continuous chip formation in metal machining. Int J Mech Sci 48(3):307–322. doi:10.1016/j.ijmecsci.2005.09.012

    Article  Google Scholar 

  23. Mamalis AG, Horváth M, Branis AS, Manolakos DE (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110(1):19–27. doi:10.1016/s0924-0136(00)00861-x

    Article  Google Scholar 

  24. Chandrasekaran VV (2011) Finite element simulation of orthogonal metal cutting using LS Dyna. Auburn University

  25. David P, Masillamani JC (2004) Determination of optimal cutting conditions in orthogonal metal cutting using LS-DYNA with design of experiments approach. Paper presented at the 8th international ls-dyna conference, Detroit, USA

  26. Limido J, Espinosa C, Salaün M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908. doi:10.1016/j.ijmecsci.2006.11.005

    Article  Google Scholar 

  27. Menezes PL, MR; Lin, J-S, Higgs, CF III; (2009) An explicit finite element model to study the influence of rake angle on the discontinuous chip formation during orthogonal metal cutting. Paper presented at the ASME/STLE 2009 International Joint Tribology Conference, Memphis, Tennessee, USA

  28. Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47(3–4):607–617. doi:10.1016/j.ijmachtools.2006.05.003

    Article  Google Scholar 

  29. Shankar MR, Chandrasekar S, King AH, Compton WD (2005) Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining. Acta Mater 53(18):4781–4793. doi:10.1016/j.actamat.2005.07.006

    Article  Google Scholar 

  30. Anilchandra AR, Surappa MK (2010) Influence of tool rake angle on the quality of pure magnesium chip-consolidated product. J Mater Process Technol 210(3):423–428. doi:10.1016/j.jmatprotec.2009.10.002

    Article  Google Scholar 

  31. Childs THC (2006) Friction modelling in metal cutting. Wear 260(3):310–318. doi:10.1016/j.wear.2005.01.052

    Article  MathSciNet  Google Scholar 

  32. Hallquist JO (2006) LS-DYNA theory manual. Livermore Software technology Corporation, USA

    Google Scholar 

  33. Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245

    Article  Google Scholar 

  34. Berstad T, Hopperstad OS, Lademo O-G, Malo KA (1999) Computational model of ductile damage and fracture in shell analysis. Paper presented at the 2nd European LS-DYNA User's Conference, Gothenburg, Sweden

  35. Lo S-P (2000) An analysis of cutting under different rake angles using the finite element method. J Mater Process Technol 105(1–2):143–151. doi:10.1016/s0924-0136(00)00650-6

    Article  Google Scholar 

  36. Xie JQ, Bayoumi AE, Zbib HM (1998) FEA modeling and simulation of shear localized chip formation in metal cutting. Int J Mach Tools Manuf 38(9):1067–1087. doi:10.1016/s0890-6955(97)00063-1

    Article  Google Scholar 

  37. Sutter G, Molinari A (2005) Analysis of the cutting force components and friction in high speed machining. J Manuf Sci Eng 127(2):245. doi:10.1115/1.1863253

    Article  Google Scholar 

  38. Günay M, Korkut I, Aslan E, Seker U (2005) Experimental investigation of the effect of cutting tool rake angle on main cutting force. J Mater Process Technol 166(1):44–49. doi:10.1016/j.jmatprotec.2004.07.092

    Article  Google Scholar 

  39. Shih AJ (1995) Finite element analysis of the rake angle effects in orthogonal metal cutting. Int J Mech Sci 38(1):1–17. doi:10.1016/0020-7403(95)00036-w

    Article  MATH  Google Scholar 

  40. Marusich TD, Ortiz M (1995) Modeling and simulation of high-speed machining. Int J Numer Methods Eng 38(21):3675–3694. doi:10.1002/nme.1620382108

    Article  MATH  Google Scholar 

  41. Rao P (2006) Manufacturing technology—metal cutting and machine tools. Tata McGraw-Hill, Delhi

    Google Scholar 

  42. Menezes PL, Kishore, Kailas SV, Lovell MR (2011) Role of surface texture, roughness, and hardness on friction during unidirectional sliding. Tribol Lett 41(1):1–15

    Article  Google Scholar 

  43. Kumar CP, Menezes PL, Kailas SV (2008) Role of surface texture on friction under boundary lubricated conditions. Tribol Online 3(1):12–18

    Article  Google Scholar 

  44. Menezes P, Nosonovsky M, Kailas S, Lovell M (2013) Friction and wear. In: Nosonovsky M, Ingole SP, Kailas SV, Lovell MR, Menezes PL (eds) Tribology for scientists and engineers. Springer, New York, pp 43–91. doi:10.1007/978-1-4614-1945-7_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep L. Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, P.L., Avdeev, I.V., Lovell, M.R. et al. An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting. Int J Adv Manuf Technol 73, 875–885 (2014). https://doi.org/10.1007/s00170-014-5877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5877-5

Keywords

Navigation