Skip to main content

Advertisement

Log in

Use of intraoperative technology in total knee arthroplasty is not associated with reductions in postoperative pain

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Our systematic review and meta-analysis sought to assess how technology-assistance impacts (1) post-operative pain and (2) opioid use in patients undergoing primary total knee arthroplasty (TKA).

Methods

Four online databases were queried for studies published up to October 2021 that reported on pain and opioid usage between technology-assisted and manual TKA (mTKA) patients. Mantel–Haenszel (M–H) models were utilized to calculate pooled mean difference (MDs) and 95% confidence interval (CIs). Subgroup analyses were conducted to isolate robotic-arm assisted (RAA) and computed-assisted navigation (CAN) cohorts. Risk of bias was assessed for all included non-randomized studies with the Methodological Index for Non-Randomized Studies (MINORS) tool. For the randomized control trials included in our study, the Detsky scale was applied.

Results

Our analysis included 31 studies, reporting on a total of 761,300 TKAs (mTKA: n = 753,554; Computer-Assisted Navigation (CAN): n = 1,309; Robotic-Arm Assisted (RAA): n = 6437). No differences were demonstrated when evaluating WOMAC (MD: 0.00, 95% CI − 0.69 to 0.69; p = 1.00), KSS (MD: 0.01, 95% CI − 1.46 to 1.49; p = 0.99), KOOS (MD − 2.91, 95% CI − 6.17 to 0.34; p = 0.08), and VAS (MD − 0.54, 95% CI − 1.01 to − 0.007; p = 0.02) pain scores between cohorts. There was mixed evidence regarding how opioid consumption differed between TKA techniques.

Conclusion

The present analysis demonstrated no difference in terms of pain across a variety of utilized patient-reported pain measurements. However, there were mixed results regarding how opioid consumption varied between manual and technology-assisted cohorts, particularly in the immediate post-operative period.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwal N, To K, McDonnell S, Khan W (2020) Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 35(11):3393–3409

    Article  PubMed  Google Scholar 

  2. Baier C, Wolfsteiner J, Otto F, Zeman F, Renkawitz T, Springorum HR, Maderbacher G, Grifka J (2017) Clinical, radiological and survivorship results after ten years comparing navigated and conventional total knee arthroplasty: a matched-pair analysis. Int Orthop 41(10):2037–2044

    Article  PubMed  Google Scholar 

  3. Bhimani SJ, Bhimani R, Smith A, Eccles C, Smith L, Malkani A (2020) Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open 1(2):8–12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blum CL, Lepkowsky E, Hussein A, Wakelin EA, Plaskos C, Koenig JA (2021) Patient expectations and satisfaction in robotic-assisted total knee arthroplasty: a prospective two-year outcome study. Arch Orthop Trauma Surg 141:2155–2164

    Article  PubMed  Google Scholar 

  5. Choi YJ, Ra HJ (2016) Patient satisfaction after total knee arthroplasty. Knee Surg Relat Res 28(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cip J, Obwegeser F, Benesch T, Bach C, Ruckenstuhl P, Martin A (2018) Twelve-year follow-up of navigated computer-assisted versus conventional total knee arthroplasty: a prospective randomized comparative trial. J Arthroplasty 33(5):1404–1411

    Article  PubMed  Google Scholar 

  7. Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A (2014) Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplasty 29(9):1795–1802

    Article  PubMed  Google Scholar 

  8. Czurda T, Fennema P, Baumgartner M, Ritschl P (2010) The association between component malalignment and post-operative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc 18(7):863–869

    Article  PubMed  Google Scholar 

  9. Detsky AS, Naylor CD, O’Rourke K, McGeer AJ, L’Abbé KA (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol 45(3):255–265

    Article  CAS  PubMed  Google Scholar 

  10. Dutton AQ, Yeo SJ, Yang KY, Lo NN, Chia KU, Chong HC (2008) Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty: a prospective, randomized study. J Bone Jt Surg Am 90(1):2–9

    Article  Google Scholar 

  11. Dyrhovden GS, Gøthesen Ø, Lygre SHL, Fenstad AM, Sørås TE, Halvorsen S, Jellestad T, Furnes O (2013) Is the use of computer navigation in total knee arthroplasty improving implant positioning and function? A comparative study of 198 knees operated at a Norwegian district hospital. BMC Musculoskelet Disord 14:321

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gaillard R, Cerciello S, Lustig S, Servien E, Neyret P (2017) Risk factors for tibial implant malpositioning in total knee arthroplasty-consecutive series of one thousand, four hundred and seventeen cases. Int Orthop 41:749–756

    Article  PubMed  Google Scholar 

  13. Gøthesen EB, Havelin LI, Petursson G, Hallan G, Strøm E, Dyrhovden G, Furnes O (2014) Functional outcome and alignment in computer-assisted and conventionally operated total knee replacements: a multicentre parallel-group randomised controlled trial. Bone Jt J. 96B(5):609–618

    Article  Google Scholar 

  14. Greiner JJ, Wang JF, Mitchell J, Hetzel SJ, Lee EJ, Illgen RL (2020) Opioid use in robotic-arm assisted total knee arthroplasty: a comparison to conventional manual total knee arthroplasty. Surg Technol Int 37:280–289

    PubMed  Google Scholar 

  15. Haaker RG, Stockheim M, Kamp M, Proff G, Breitenfelder J, Ottersbach A (2005) Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop 433:152–159

    Article  Google Scholar 

  16. Hamilton DA, Ononuju U, Nowak C, Chen C, Darwiche H (2021) Differences in immediate postoperative outcomes between robotic-assisted TKA and conventional TKA. Arthroplast Today 8:57–62

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hampp E, Chughtai M, Scholl L, Sodhi N, Bhowmik-Stoker M, Jacofsky D, Mont M (2019) Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg 32:239–250

    Article  PubMed  Google Scholar 

  18. Higgins, Julian PT and Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions|Cochrane Training. https://training.cochrane.org/cochrane-handbook-systematic-reviews-interventions. Accessed 23 Oct 2021

  19. Hoffart HE, Langenstein E, Vasak N (2012) A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Jt Surg Br 94(2):194–199

    Article  Google Scholar 

  20. Kahlenberg CA, Nwachukwu BU, McLawhorn AS, Cross MB, Cornell CN, Padgett DE (2018) Patient satisfaction after total knee replacement: a systematic review. HSS J 14(2):192–201

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kang K-T, Son J, Kwon O-R, Koh Y-G (2017) Malpositioning of prosthesis: patient-specific total knee arthroplasty versus standard off-the-shelf total knee arthroplasty. J Am Acad Orthop Surg Glob Res Rev 1:e020

    PubMed  PubMed Central  Google Scholar 

  22. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS (2019) Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 4:611

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kayani B, Konan S, Pietrzak JRT, Haddad FS (2018) Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplasty 33:2496–2501

    Article  PubMed  Google Scholar 

  24. Kayani B, Konan S, Pietrzak JRT, Tahmassebi J, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty. Bone Jt J. 100B(7):930–937

    Article  Google Scholar 

  25. Khlopas A, Chughtai M, Hampp EL, Scholl LY, Prieto M, Chang T-C, Abbasi A, Bhowmik-Stoker M, Otto J, Jacofsky DJ, Mont MA (2017) Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int 30:441–446

    PubMed  Google Scholar 

  26. Khlopas A, Sodhi N, Hozack WJ, Chen AF, Mahoney OM, Kinsey T, Orozco F, Mont MA (2020) Patient-reported functional and satisfaction outcomes after robotic-arm-assisted total knee arthroplasty: early results of a prospective multicenter investigation. J Knee Surg 33(7):685–690

    Article  PubMed  Google Scholar 

  27. Kim YH, Park JW, Kim JS (2018) 2017 Chitranjan S. Ranawat award: does computer navigation in knee arthroplasty improve functional outcomes in young patients? A randomized study. Clin Orthop 476(1):6–15

    Article  PubMed  Google Scholar 

  28. Kim YH, Park JW, Kim JS (2012) Computer-navigated versus conventional total knee arthroplasty: a prospective randomized trial. J Bone Jt Surg Am 94(22):2017–2024

    Article  Google Scholar 

  29. Kim YH, Park JW, Kim JS (2017) The clinical outcome of computer-navigated compared with conventional knee arthroplasty in the same patients: a prospective, randomized, double-blind, long-term study. J Bone Jt Surg Am 99(12):989–996

    Article  Google Scholar 

  30. King CA, Jordan M, Bradley AT, Wlodarski C, Tauchen A, Puri L (2020) Transitioning a practice to robotic total knee arthroplasty is correlated with favorable short-term clinical outcomes—a single surgeon experience. J Knee Surg 35(1):78–82

    PubMed  Google Scholar 

  31. Larach DB, Sahara MJ, As-Sanie S, Moser SE, Urquhart AG, Lin J, Hassett AL, Wakeford JA, Clauw DJ, Waljee JF, Brummett CM (2021) Patient factors associated with opioid consumption in the month following major surgery. Ann Surg 273(3):507–515

    Article  PubMed  Google Scholar 

  32. Lee DY, Park YJ, Hwang SC, Park JS, Kang DG (2020) No differences in mid- to long-term outcomes of computer-assisted navigation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28(10):3183–3192

    Article  PubMed  Google Scholar 

  33. Luna IE, Kehlet H, Peterson B, Wede HR, Hoevsgaard SJ, Aasvang EK (2017) Early patient-reported outcomes versus objective function after total hip and knee arthroplasty: a prospective cohort study. Bone Jt J. 99B(9):1167–1175

    Article  Google Scholar 

  34. Lüring C, Kauper M, Bäthis H, Perlick L, Beckmann J, Grifka J, Tingart M, Rath B (2012) A five to seven year follow-up comparing computer-assisted vs freehand TKR with regard to clinical parameters. Int Orthop 36(3):553–558

    Article  PubMed  Google Scholar 

  35. Mahoney O, Kinsey T, Sodhi N, Mont MA, Chen AF, Orozco F, Hozack W (2020) Improved component placement accuracy with robotic-arm assisted total knee arthroplasty. J Knee Surg 35(3):337–344

    PubMed  Google Scholar 

  36. Marchand KB, Moody R, Scholl LY, Bhowmik-Stoker M, Taylor KB, Mont MA, Marchand RC (2021) Results of robotic-assisted versus manual total knee arthroplasty at 2-year follow-up. J Knee Surg. https://doi.org/10.1055/s-0041-1731349

    Article  PubMed  Google Scholar 

  37. Marchand RC, Sodhi N, Anis HK, Ehiorobo J, Newman JM, Taylor K, Condrey C, Hepinstall MS, Mont MA (2019) One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty. J Knee Surg 32(11):1063–1068

    Article  PubMed  Google Scholar 

  38. Mitchell J, Wang J, Bukowski B, Greiner J, Wolford B, Oyer M, Illgen RL (2021) Relative clinical outcomes comparing manual and robotic-assisted total knee arthroplasty at minimum 1-year follow-up. HSS J 17(3):267–273

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’Brien PE, Mears SC, Siegel ER, Barnes CL, Stambough JB (2022) Does in-hospital opioid use affect opioid consumption after total joint arthroplasty? J Arthroplasty 37(5):824–830

    Article  PubMed  Google Scholar 

  40. Ofa SA, Ross BJ, Flick TR, Patel AH, Sherman WF (2020) Robotic total knee arthroplasty vs conventional total knee arthroplasty: a nationwide database study. Arthroplast Today 6(4):1001-1008.e3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Öhlin A, Karlsson L, Senorski EH, Jónasson P, Ahldén M, Baranto A, Ayeni OR, Sansone M (2019) Quality assessment of prospective cohort studies evaluating arthroscopic treatment for femoroacetabular impingement syndrome: a systematic review. Orthop J Sports Med 7(5):2325967119838533

    Article  PubMed  PubMed Central  Google Scholar 

  42. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18(3):e1003583

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patrick NJ, Man LLC, Wai-Wang C, Tim-Yun OM, Wing CK, Hing CK, Yin CK, Ki-Wai HK (2021) No difference in long-term functional outcomes or survivorship after total knee arthroplasty with or without computer navigation: a 17-year survivorship analysis. Knee Surg Relat Res 33(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  44. Petursson G, Fenstad AM, Gøthesen Ø, Dyrhovden GS, Hallan G, Röhrl SM, Aamodt A, Furnes O (2018) Computer-assisted compared with conventional total knee replacement: a multicenter parallel-group randomized controlled trial. J Bone Jt Surg Am 100(15):1265–1274

    Article  Google Scholar 

  45. Pierce J, Needham K, Adams C, Coppolecchia A, Lavernia C (2020) Robotic arm-assisted knee surgery: an economic analysis. Am J Manag Care 26(7):e205–e210

    Article  PubMed  Google Scholar 

  46. Samuel LT, Karnuta JM, Banerjee A, Briskin I, Cantrell WA, George JW, Higuera-Rueda CA, Kamath AF, Khlopas A, Klika A, Krebs VE, Mesko NW, Mont MA, Murray TG, Piuzzi NS, Shah P, Stearns K, Sultan AA, Molloy RM (2021) Robotic arm-assisted versus manual total knee arthroplasty: a propensity score-matched analysis. J Knee Surg. https://doi.org/10.1055/s-0041-1731323

    Article  PubMed  Google Scholar 

  47. Schmitt J, Hauk C, Kienapfel H, Pfeiffer M, Efe T, Fuchs-Winkelmann S, Heyse TJ (2011) Navigation of total knee arthroplasty: rotation of components and clinical results in a prospectively randomized study. BMC Musculoskelet Disord 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seon JK, Song EK (2005) Functional impact of navigation-assisted minimally invasive total knee arthroplasty. Orthopedics 28(10 Suppl):s1251–s1254

    PubMed  Google Scholar 

  49. Seon JK, Song EK (2006) Navigation-assisted less invasive total knee arthroplasty compared with conventional total knee arthroplasty. A randomized prospective trial. J Arthroplasty 21(6):777–782

    Article  PubMed  Google Scholar 

  50. Sharma R, Farrokhyar F, McKnight LL, Bhandari M, Poolman RW, Adili A (2011) Quality of assessment of randomized controlled trials in blood conservation after joint arthroplasty. J Arthroplasty 26(6):909–913

    Article  PubMed  Google Scholar 

  51. Siddiqi A, Mont MA, Krebs VE, Piuzzi NS (2021) Not all robotic-assisted total knee arthroplasty are the same. J Am Acad Orthop Surg 29:45–59

    Article  PubMed  Google Scholar 

  52. Singisetti K, Muthumayandi K, Abual-Rub Z, Weir D (2015) Navigation-assisted versus conventional total knee replacement: no difference in patient-reported outcome measures (PROMs) at 1 and 2 years. Arch Orthop Trauma Surg 135(11):1595–1601

    Article  PubMed  Google Scholar 

  53. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (Minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716

    Article  PubMed  Google Scholar 

  54. Song EK, Agrawal PR, Kim SK, Seo HY, Seon JK (2016) A randomized controlled clinical and radiological trial about outcomes of navigation-assisted TKA compared to conventional TKA: long-term follow-up. Knee Surg Sports Traumatol Arthrosc 24(11):3381–3386

    Article  CAS  PubMed  Google Scholar 

  55. Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ, Orth T&, Fellow A, Orthopaedic C (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89(4):477–480

    Article  CAS  PubMed  Google Scholar 

  56. Stulberg SD, Yaffe MA, Koo SS (2006) Computer-assisted surgery versus manual total knee arthroplasty: a case-controlled study. J Bone Jt Surg Am 88(Suppl 4):47–54

    Google Scholar 

  57. Tolk JJ, Koot HWJ, Janssen RPA (2012) Computer navigated versus conventional total knee arthroplasty. J Knee Surg 25(4):347–352

    Article  PubMed  Google Scholar 

  58. Varady NH, Smith EL, Clarkson SJ, Niu R, Freccero DM, Chen AF (2021) Opioid use following inpatient versus outpatient total joint arthroplasty. J Bone Jt Surg Am 103(6):497–505

    Article  Google Scholar 

  59. Yaffe M, Chan P, Goyal N, Luo M, Cayo M, Stulberg SD (2013) Computer-assisted versus manual TKA: no difference in clinical or functional outcomes at 5-year follow-up. Orthopedics 36(5):e627–e632

    Article  PubMed  Google Scholar 

  60. Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, Stulberg SD (2014) Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg 9(5):837–844

    Article  PubMed  Google Scholar 

  61. Zak SG, Yeroushalmi D, Tang A, Meftah M, Schnaser E, Schwarzkopf R (2021) The use of navigation or robotic-assisted technology in total knee arthroplasty does not reduce postoperative pain. J Knee Surg. https://doi.org/10.1055/s-0041-1735313

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul F. Kamath.

Ethics declarations

Conflict of interest

A.F.K. reports the following disclosures: research support (Signature Orthopaedics), paid presenter or speaker (DePuy Synthes and Zimmer Biomet), paid consultant (DePuy Synthes andd Zimmer Biomet), stock or stock options (Zimmer Biomet, Johnson & Johnson, and Procter & Gamble), IP royalties (Innomed), and board or committee member (AAOS, AAHKS, and Anterior Hip Foundation). The remaining authors have nothing to disclose.

Ethical approval

As our analysis used publicly available and deidentified data, it was exempt from Institutional Review Board (IRB) approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A.G., Bernhard, Z., Acuña, A.J. et al. Use of intraoperative technology in total knee arthroplasty is not associated with reductions in postoperative pain. Knee Surg Sports Traumatol Arthrosc 31, 1370–1381 (2023). https://doi.org/10.1007/s00167-022-07098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07098-w

Keywords

Navigation