Skip to main content
Log in

Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Clinical evaluation and management of anterior cruciate ligament (ACL) injury is one of the most widely researched topics in orthopedic sports medicine, giving providers ample data on which to base their practices. The ACL is also the most commonly treated knee ligament. This study reports on current topics and research in clinical management of ACL injury, starting with evaluation, operative versus nonoperative management, and considerations in unique populations. Discussion of graft selection and associated procedures follows. Areas of uncertainty, rehabilitation, and prevention are the final topics before a reflection on the current state of ACL research and clinical management of ACL injury.

Level of evidence V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from: Treatment after anterior cruciate ligament injury: Panther Symposium ACL Treatment Consensus Group. Diermeier T, et al. Knee Surgery, Sports Traumatology, Arthroscopy 28(8):2390–2402©2020 with permission from BMJ Publishing Group Ltd

Fig. 3

Reproduced from: Kaeding CC, et al. Sports Health 3(1):73–81. Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort. ©2011 by SAGE Publications

Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achtnich A, Herbst E, Forkel P, Metzlaff S, Sprenker F, Imhoff AB et al (2016) Acute proximal anterior cruciate ligament tears: outcomes after arthroscopic suture anchor repair versus anatomic single-bundle reconstruction. Arthroscopy 32(12):2562–2569

    PubMed  Google Scholar 

  2. Adachi N, Ochi M, Uchio Y, Sakai Y, Kuriwaka M, Fujihara A (2003) Harvesting hamstring tendons for ACL reconstruction influences postoperative hamstring muscle performance. Arch Orthop Trauma Surg 123(9):460–465

    PubMed  Google Scholar 

  3. Ageberg E, Forssblad M, Herbertsson P, Roos EM (2010) Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med 38(7):1334–1342

    PubMed  Google Scholar 

  4. Akoto R, Alm L, Drenck TC, Frings J, Krause M, Frosch KH (2020) Slope-correction osteotomy with lateral extra-articular tenodesis and revision anterior cruciate ligament reconstruction is highly effective in treating high-grade anterior knee laxity. Am J Sports Med 48(14):3478–3485

    PubMed  PubMed Central  Google Scholar 

  5. Almqvist KF, Jan H, Vercruysse C, Verbeeck R, Verdonk R (2007) The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties. Knee Surg Sports Traumatol Arthrosc 15(11):1326–1330

    CAS  PubMed  Google Scholar 

  6. Amirault JD, Cameron JC, MacIntosh DL, Marks P (1988) Chronic anterior cruciate ligament deficiency. Long-term results of MacIntosh’s lateral substitution reconstruction. J Bone Joint Surg Br 70(4):622–624

    CAS  PubMed  Google Scholar 

  7. Anderson AF, Anderson CN (2015) Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sports Med 43(2):275–281

    PubMed  Google Scholar 

  8. Araujo P, van Eck CF, Torabi M, Fu FH (2013) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21(7):1495–1501

    PubMed  Google Scholar 

  9. Ardern CL, Österberg A, Tagesson S, Gauffin H, Webster KE, Kvist J (2014) The impact of psychological readiness to return to sport and recreational activities after anterior cruciate ligament reconstruction. Br J Sports Med 48(22):1613–1619

    PubMed  Google Scholar 

  10. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE (2013) Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 41(7):1549–1558

    PubMed  Google Scholar 

  11. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39(3):538–543

    PubMed  Google Scholar 

  12. Arnold MP, Calcei JG, Vogel N, Magnussen RA, Clatworthy M, Spalding T et al (2021) ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades. Knee Surg Sports Traumatol Arthrosc 29(11):3871–3876

    PubMed  Google Scholar 

  13. Arundale AJH, Capin JJ, Zarzycki R, Smith AH, Snyder-Mackler L (2018) Two year ACL reinjury rate of 2.5%: outcomes report of the men in a secondary ACL injury prevention program (ACL-SPORTS). Int J Sports Phys Ther 13(3):422–431

    PubMed  PubMed Central  Google Scholar 

  14. Barrett G, Stokes D, White M (2005) Anterior cruciate ligament reconstruction in patients older than 40 years: allograft versus autograft patellar tendon. Am J Sports Med 33(10):1505–1512

    PubMed  Google Scholar 

  15. Baumeister J, Reinecke K, Schubert M, Weiss M (2011) Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res 29(9):1383–1389

    PubMed  Google Scholar 

  16. Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36(5):267–288

    PubMed  Google Scholar 

  17. Birmingham TB, Bryant DM, Giffin JR, Litchfield RB, Kramer JF, Donner A et al (2008) A randomized controlled trial comparing the effectiveness of functional knee brace and neoprene sleeve use after anterior cruciate ligament reconstruction. Am J Sports Med 36(4):648–655

    PubMed  Google Scholar 

  18. Bisson LJ, Kluczynski MA, Hagstrom LS, Marzo JM (2013) A prospective study of the association between bone contusion and intra-articular injuries associated with acute anterior cruciate ligament tear. Am J Sports Med 41(8):1801–1807

    PubMed  Google Scholar 

  19. Blyth MJ, Gosal HS, Peake WM, Bartlett RJ (2003) Anterior cruciate ligament reconstruction in patients over the age of 50 years: 2- to 8-year follow-up. Knee Surg Sports Traumatol Arthrosc 11(4):204–211

    PubMed  Google Scholar 

  20. Brandsson S, Kartus J, Larsson J, Eriksson BI, Karlsson J (2000) A comparison of results in middle-aged and young patients after anterior cruciate ligament reconstruction. Arthroscopy 16(2):178–182

    CAS  PubMed  Google Scholar 

  21. Brunst C, Ithurburn MP, Zbojniewicz AM, Paterno MV, Schmitt LC (2021) Return-to-sport quadriceps strength symmetry impacts 5-year cartilage integrity after anterior cruciate ligament reconstruction: a preliminary analysis. J Orthop Res. https://doi.org/10.1002/jor.25029

    Article  PubMed  Google Scholar 

  22. Brusalis CM, Lakomkin N, Suryavanshi JR, Cruz AI Jr, Green DW, Jones KJ et al (2017) Clinical outcome reporting in youth ACL literature is widely variable. Orthop J Sports Med 5(8):2325967117724431

    PubMed  PubMed Central  Google Scholar 

  23. Buckthorpe M, Della Villa F (2020) Optimising the ‘mid-stage’ training and testing process after ACL reconstruction. Sports Med 50(4):657–678

    PubMed  Google Scholar 

  24. Buckthorpe M, Della Villa F, Della Villa S, Roi GS (2019) On-field rehabilitation part 1: 4 pillars of high-quality on-field rehabilitation are restoring movement quality, physical conditioning, restoring sport-specific skills, and progressively developing chronic training load. J Orthop Sports Phys Ther 49(8):565–569

    PubMed  Google Scholar 

  25. Buckthorpe M, Della Villa F, Della Villa S, Roi GS (2019) On-field rehabilitation part 2: a 5-stage program for the soccer player focused on linear movements, multidirectional movements, soccer-specific skills, soccer-specific movements, and modified practice. J Orthop Sports Phys Ther 49(8):570–575

    PubMed  Google Scholar 

  26. Castoldi M, Magnussen RA, Gunst S, Batailler C, Neyret P, Lustig S et al (2020) A randomized controlled trial of bone-patellar tendon-bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up. Am J Sports Med 48(7):1665–1672

    PubMed  Google Scholar 

  27. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J (2017) Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med 45(6):1326–1332

    PubMed  Google Scholar 

  28. Cavanaugh JT, Powers M (2017) ACL rehabilitation progression: where are we now? Curr Rev Musculoskelet Med 10(3):289–296

    PubMed  PubMed Central  Google Scholar 

  29. Chalmers PN, Mall NA, Moric M, Sherman SL, Paletta GP, Cole BJ et al (2014) Does ACL reconstruction alter natural history?: A systematic literature review of long-term outcomes. J Bone Joint Surg Am 96(4):292–300

    PubMed  Google Scholar 

  30. Chiba D, Gale T, Nishida K, Suntaxi F, Lesniak BP, Fu FH et al (2021) Lateral extra-articular tenodesis contributes little to change in vivo kinematics after anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med 49(7):1803–1812

    PubMed  Google Scholar 

  31. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43(10):2510–2514

    PubMed  Google Scholar 

  32. Christino MA, Fantry AJ, Vopat BG (2015) Psychological aspects of recovery following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 23(8):501–509

    PubMed  Google Scholar 

  33. Ciccotti MC, Secrist E, Tjoumakaris F, Ciccotti MG, Freedman KB (2017) Anatomic anterior cruciate ligament reconstruction via independent tunnel drilling: a systematic review of randomized controlled trials comparing patellar tendon and hamstring autografts. Arthroscopy 33(5):1062–1071

    PubMed  Google Scholar 

  34. Cinque ME, Chahla J, Moatshe G, DePhillipo NN, Kennedy NI, Godin JA et al (2017) Outcomes and complication rates after primary anterior cruciate ligament reconstruction are similar in younger and older patients. Orthop J Sports Med 5(10):2325967117729659

    PubMed  PubMed Central  Google Scholar 

  35. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30(7):882–890

    PubMed  Google Scholar 

  36. Costa GG, Grassi A, Perelli S, Agrò G, Bozzi F, Lo Presti M et al (2019) Age over 50 years is not a contraindication for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27(11):3679–3691

    PubMed  Google Scholar 

  37. Crum RJ, Kay J, Lesniak BP, Getgood A, Musahl V, de Sa D (2021) Bone versus all soft tissue quadriceps tendon autografts for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 37(3):1040–1052

    PubMed  Google Scholar 

  38. Dahm DL, Wulf CA, Dajani KA, Dobbs RE, Levy BA, Stuart MA (2008) Reconstruction of the anterior cruciate ligament in patients over 50 years. J Bone Joint Surg Br 90(11):1446–1450

    CAS  PubMed  Google Scholar 

  39. Davies NH, Niall D, King LJ, Lavelle J, Healy JC (2004) Magnetic resonance imaging of bone bruising in the acutely injured knee–short-term outcome. Clin Radiol 59(5):439–445

    CAS  PubMed  Google Scholar 

  40. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB (2007) Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 23(1):21.e21-21.e11

    Google Scholar 

  41. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852

    PubMed  Google Scholar 

  42. DeLee JC, Curtis R (1983) Anterior cruciate ligament insufficiency in children. Clin Orthop Relat Res 172:112–118

    Google Scholar 

  43. Della Villa F, Buckthorpe M, Grassi A, Nabiuzzi A, Tosarelli F, Zaffagnini S et al (2020) Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med 54(23):1423–1432

    PubMed  Google Scholar 

  44. Della Villa F, Di Paolo S, Santagati D, Della Croce E, Lopomo NF, Grassi A et al (2021) A 2D video-analysis scoring system of 90° change of direction technique identifies football players with high knee abduction moment. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06571-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Della Villa F, Hägglund M, Della Villa S, Ekstrand J, Waldén M (2021) High rate of second ACL injury following ACL reconstruction in male professional footballers: an updated longitudinal analysis from 118 players in the UEFA Elite Club Injury Study. Br J Sports Med. https://doi.org/10.1136/bjsports-2020-103555

    Article  PubMed  Google Scholar 

  46. Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ (2009) Changing sidestep cutting technique reduces knee valgus loading. Am J Sports Med 37(11):2194–2200

    PubMed  Google Scholar 

  47. DiBartola AC, Everhart JS, Kaeding CC, Magnussen RA, Flanigan DC (2016) Maximum load to failure of high dose versus low dose gamma irradiation of anterior cruciate ligament allografts: a meta-analysis. Knee 23(5):755–762

    PubMed  Google Scholar 

  48. Diermeier T, Rothrauff BB, Engebretsen L, Lynch AD, Ayeni OR, Paterno MV et al (2020) Treatment after anterior cruciate ligament injury: Panther symposium ACL treatment consensus group. Knee Surg Sports Traumatol Arthrosc 28(8):2390–2402

    PubMed  PubMed Central  Google Scholar 

  49. DiFelice GS, Villegas C, Taylor S (2015) Anterior cruciate ligament preservation: early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy 31(11):2162–2171

    PubMed  Google Scholar 

  50. Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S (2014) 20 years of pediatric anterior cruciate ligament reconstruction in New York state. Am J Sports Med 42(3):675–680

    PubMed  Google Scholar 

  51. Dos’Santos T, McBurnie A, Donelon T, Thomas C, Comfort P, Jones PA (2019) A qualitative screening tool to identify athletes with ‘high-risk’ movement mechanics during cutting: the cutting movement assessment score (CMAS). Phys Ther Sport 38:152–161

    PubMed  Google Scholar 

  52. Dumont GD, Hogue GD, Padalecki JR, Okoro N, Wilson PL (2012) Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors. Am J Sports Med 40(9):2128–2133

    PubMed  Google Scholar 

  53. Dunn KL, Lam KC, Valovich McLeod TC (2016) Early operative versus delayed or nonoperative treatment of anterior cruciate ligament injuries in pediatric patients. J Athl Train 51(5):425–427

    PubMed  PubMed Central  Google Scholar 

  54. Eggli S, Kohlhof H, Zumstein M, Henle P, Hartel M, Evangelopoulos DS et al (2015) Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL. Knee Surg Sports Traumatol Arthrosc 23(4):1215–1221

    CAS  PubMed  Google Scholar 

  55. Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF (2014) Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med 42(10):2311–2318

    PubMed  Google Scholar 

  56. Fältström A, Kvist J, Hägglund M (2021) High risk of new knee injuries in female soccer players after primary anterior cruciate ligament reconstruction at 5- to 10-year follow-up. Am J Sports Med 49(13):3479–3487

    PubMed  Google Scholar 

  57. Feagin JA Jr, Curl WW (1976) Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med 4(3):95–100

    PubMed  Google Scholar 

  58. Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31(4):564–573

    PubMed  Google Scholar 

  59. Filardo G, de Caro F, Andriolo L, Kon E, Zaffagnini S, Marcacci M (2017) Do cartilage lesions affect the clinical outcome of anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc 25(10):3061–3075

    PubMed  Google Scholar 

  60. Frobell RB, Roos HP, Roos EM, Roemer FW, Ranstam J, Lohmander LS (2013) Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial. BMJ 346:f232

    PubMed  PubMed Central  Google Scholar 

  61. Gagliardi AG, Carry PM, Parikh HB, Traver JL, Howell DR, Albright JC (2019) ACL repair with suture ligament augmentation is associated with a high failure rate among adolescent patients. Am J Sports Med 47(3):560–566

    PubMed  Google Scholar 

  62. Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

    Google Scholar 

  63. Getgood AMJ, Bryant DM, Litchfield R, Heard M, McCormack RG, Rezansoff A et al (2020) Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the stability study randomized clinical trial. Am J Sports Med 48(2):285–297

    PubMed  Google Scholar 

  64. Gföller P, Abermann E, Runer A, Hoser C, Pflüglmayer M, Wierer G et al (2019) Non-operative treatment of ACL injury is associated with opposing subjective and objective outcomes over 20 years of follow-up. Knee Surg Sports Traumatol Arthrosc 27(8):2665–2671

    PubMed  Google Scholar 

  65. Gobbi A, Domzalski M, Pascual J (2004) Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surg Sports Traumatol Arthrosc 12(6):534–539

    PubMed  Google Scholar 

  66. Grassi A, Macchiarola L, Urrizola Barrientos F, Zicaro JP, Costa Paz M, Adravanti P et al (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47(2):285–295

    PubMed  Google Scholar 

  67. Guenther D, Irarrázaval S, Albers M, Vernacchia C, Irrgang JJ, Musahl V et al (2017) Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 25(5):1576–1582

    PubMed  Google Scholar 

  68. Guenther D, Rahnemai-Azar AA, Bell KM, Irarrázaval S, Fu FH, Musahl V et al (2017) The anterolateral capsule of the knee behaves like a sheet of fibrous tissue. Am J Sports Med 45(4):849–855

    PubMed  Google Scholar 

  69. Hagmeijer MH, Hevesi M, Desai VS, Sanders TL, Camp CL, Hewett TE et al (2019) Secondary meniscal tears in patients with anterior cruciate ligament injury: relationship among operative management, osteoarthritis, and arthroplasty at 18-year mean follow-up. Am J Sports Med 47(7):1583–1590

    PubMed  Google Scholar 

  70. Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction: quadriceps versus patellar autograft. Clin Orthop Relat Res 466(1):198–204

    PubMed  PubMed Central  Google Scholar 

  71. Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH (1992) Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med 20(5):499–506

    CAS  PubMed  Google Scholar 

  72. Helito CP, Bonadio MB, Rozas JS, Wey JM, Pereira CA, Cardoso TP et al (2016) Biomechanical study of strength and stiffness of the knee anterolateral ligament. BMC Musculoskelet Disord 17:193

    PubMed  PubMed Central  Google Scholar 

  73. Herbst E, Albers M, Burnham JM, Shaikh HS, Naendrup JH, Fu FH et al (2017) The anterolateral complex of the knee: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 25(4):1009–1014

    PubMed  Google Scholar 

  74. Heusdens CHW, Hopper GP, Dossche L, Roelant E, Mackay GM (2019) Anterior cruciate ligament repair with independent suture tape reinforcement: a case series with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 27(1):60–67

    PubMed  Google Scholar 

  75. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD (2010) Understanding and preventing ACL injuries: current biomechanical and epidemiologic considerations—update 2010. N Am J Sports Phys Ther 5(4):234–251

    PubMed  PubMed Central  Google Scholar 

  76. Hewett TE, Ford KR, Xu YY, Khoury J, Myer GD (2017) Effectiveness of neuromuscular training based on the neuromuscular risk profile. Am J Sports Med 45(9):2142–2147

    PubMed  PubMed Central  Google Scholar 

  77. Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 34(2):299–311

    PubMed  Google Scholar 

  78. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501

    PubMed  Google Scholar 

  79. Hiemstra LA, Heard SM, Sasyniuk TM, Buchko GL, Reed JG, Monteleone BJ (2009) Knee immobilization for pain control after a hamstring tendon anterior cruciate ligament reconstruction: a randomized clinical trial. Am J Sports Med 37(1):56–64

    PubMed  Google Scholar 

  80. Hoffmann C, Friederichs J, von Rüden C, Schaller C, Bühren V, Moessmer C (2017) Primary single suture anchor re-fixation of anterior cruciate ligament proximal avulsion tears leads to good functional mid-term results: a preliminary study in 12 patients. J Orthop Surg Res 12(1):171

    PubMed  PubMed Central  Google Scholar 

  81. Holm I, Oiestad BE, Risberg MA, Gunderson R, Aune AK (2012) No differences in prevalence of osteoarthritis or function after open versus endoscopic technique for anterior cruciate ligament reconstruction: 12-year follow-up report of a randomized controlled trial. Am J Sports Med 40(11):2492–2498

    PubMed  Google Scholar 

  82. Horvath A, Meredith SJ, Nishida K, Hoshino Y, Musahl V (2020) Objectifying the pivot shift test. Sports Med Arthrosc Rev 28(2):36–40

    PubMed  Google Scholar 

  83. Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, Hofbauer M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21(4):975–980

    PubMed  Google Scholar 

  84. Houck DA, Kraeutler MJ, Vidal AF, McCarty EC, Bravman JT, Wolcott ML (2018) Variance in anterior cruciate ligament reconstruction graft selection based on patient demographics and location within the multicenter orthopaedic outcomes network cohort. J Knee Surg 31(5):472–478

    PubMed  Google Scholar 

  85. Hunnicutt JL, Xerogeanes JW, Tsai LC, Sprague PA, Newsome M, Slone HS et al (2021) Terminal knee extension deficit and female sex predict poorer quadriceps strength following ACL reconstruction using all-soft tissue quadriceps tendon autografts. Knee Surg Sports Traumatol Arthrosc 29(9):3085–3095

    PubMed  Google Scholar 

  86. Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36(1):48–56

    PubMed  Google Scholar 

  87. Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ et al (2019) Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc 27(10):3381–3389

    PubMed  Google Scholar 

  88. Jones KG (1963) Reconstruction of the anterior cruciate ligament. A techinque using the central one-third of the patellar ligament. J Bone Jt Surg Am 45:925–932

    CAS  Google Scholar 

  89. Kaeding CC, Aros B, Pedroza A, Pifel E, Amendola A, Andrish JT et al (2011) Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort. Sports Health 3(1):73–81

    PubMed  PubMed Central  Google Scholar 

  90. Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43(7):1583–1590

    PubMed  PubMed Central  Google Scholar 

  91. Kan SL, Yuan ZF, Ning GZ, Yang B, Li HL, Sun JC et al (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis with trial sequential analysis. Medicine 95(38):e4936

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med 18(4):354–358

    CAS  PubMed  Google Scholar 

  93. Kapreli E, Athanasopoulos S, Gliatis J, Papathanasiou M, Peeters R, Strimpakos N et al (2009) Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med 37(12):2419–2426

    PubMed  Google Scholar 

  94. Kennedy MI, Claes S, Fuso FA, Williams BT, Goldsmith MT, Turnbull TL et al (2015) The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 43(7):1606–1615

    PubMed  Google Scholar 

  95. Kim DK, Park WH (2015) Sex differences in knee strength deficit 1 year after anterior cruciate ligament reconstruction. J Phys Ther Sci 27(12):3847–3849

    PubMed  PubMed Central  Google Scholar 

  96. Kim SJ, Kumar P, Oh KS (2009) Anterior cruciate ligament reconstruction: autogenous quadriceps tendon-bone compared with bone-patellar tendon-bone grafts at 2-year follow-up. Arthroscopy 25(2):137–144

    PubMed  Google Scholar 

  97. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448

    PubMed  Google Scholar 

  98. Krosshaug T, Steffen K, Kristianslund E, Nilstad A, Mok KM, Myklebust G et al (2016) The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med 44(4):874–883

    PubMed  Google Scholar 

  99. Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24(3):292–298

    PubMed  Google Scholar 

  100. Kuechle DK, Pearson SE, Beach WR, Freeman EL, Pawlowski DF, Whipple TL et al (2002) Allograft anterior cruciate ligament reconstruction in patients over 40 years of age. Arthroscopy 18(8):845–853

    PubMed  Google Scholar 

  101. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr (2017) What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475(10):2412–2426

    PubMed  PubMed Central  Google Scholar 

  102. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16(11):1009–1016

    PubMed  Google Scholar 

  103. Lawrence JT, Argawal N, Ganley TJ (2011) Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sports Med 39(12):2582–2587

    PubMed  Google Scholar 

  104. Lemaire M (1980) Technique actuelle de plastie ligamentaire pour rupture ancienne du ligament croisé antérieur. Rev Chir Orthop Repar Appar 66(8):523–525

    CAS  Google Scholar 

  105. Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG (2014) Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee 21(3):736–742

    PubMed  Google Scholar 

  106. Leppänen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Äyrämö S et al (2017) Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med 45(2):386–393

    PubMed  Google Scholar 

  107. Leys T, Salmon L, Waller A, Linklater J, Pinczewski L (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40(3):595–605

    PubMed  Google Scholar 

  108. Logerstedt DS, Scalzitti D, Risberg MA, Engebretsen L, Webster KE, Feller J et al (2017) Knee stability and movement coordination impairments: knee ligament sprain revision 2017. J Orthop Sports Phys Ther 47(11):A1-a47

    PubMed  Google Scholar 

  109. Lucarno S, Zago M, Buckthorpe M, Grassi A, Tosarelli F, Smith R et al (2021) Systematic video analysis of anterior cruciate ligament injuries in professional female soccer players. Am J Sports Med 49(7):1794–1802

    PubMed  Google Scholar 

  110. Magnussen RA, Carey JL, Spindler KP (2011) Does autograft choice determine intermediate-term outcome of ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 19(3):462–472

    PubMed  Google Scholar 

  111. Maletis GB, Inacio MC, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J 95-B(5):623–628

    CAS  PubMed  Google Scholar 

  112. Mayr HO, Hochrein A, Hein W, Hube R, Bernstein A (2010) Rehabilitation results following anterior cruciate ligament reconstruction using a hard brace compared to a fluid-filled soft brace. Knee 17(2):119–126

    PubMed  Google Scholar 

  113. Mehran N, Moutzouros VB, Bedi A (2015) A review of current graft options for anterior cruciate ligament reconstruction. JBJS Rev 3(11):e2

    PubMed  Google Scholar 

  114. Meuffels DE, Favejee MM, Vissers MM, Heijboer MP, Reijman M, Verhaar JA (2009) Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med 43(5):347–351

    CAS  PubMed  Google Scholar 

  115. Mohtadi N, Chan D, Barber R, Oddone Paolucci E (2015) A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med 25(4):321–331

    PubMed  Google Scholar 

  116. Mohtadi NG, Chan DS, Dainty KN, Whelan DB (2011) Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev 2011(9)

  117. Murray MM, Flutie BM, Kalish LA, Ecklund K, Fleming BC, Proffen BL et al (2016) The bridge-enhanced anterior cruciate ligament repair (BEAR) procedure: an early feasibility cohort study. Orthop J Sports Med 4(11):2325967116672176

    PubMed  PubMed Central  Google Scholar 

  118. Murray MM, Kalish LA, Fleming BC, Flutie B, Freiberger C, Henderson RN et al (2019) Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med 7(3):2325967118824356

    PubMed  PubMed Central  Google Scholar 

  119. Musahl V, Diermeier T, de Sa D, Karlsson J (2020) ACL surgery: when to do it? Knee Surg Sports Traumatol Arthrosc 28(7):2023–2026

    PubMed  Google Scholar 

  120. Musahl V, Herbst E, Burnham JM, Fu FH (2018) The anterolateral complex and anterolateral ligament of the knee. J Am Acad Orthop Surg 26(8):261–267

    PubMed  Google Scholar 

  121. Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S et al (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731

    PubMed  Google Scholar 

  122. Musahl V, Karlsson J (2019) Anterior cruciate ligament tear. N Engl J Med 380(24):2341–2348

    PubMed  Google Scholar 

  123. Nwachukwu BU, Patel BH, Lu Y, Allen AA, Williams RJ 3rd (2019) Anterior cruciate ligament repair outcomes: an updated systematic review of recent literature. Arthroscopy 35(7):2233–2247

    PubMed  Google Scholar 

  124. Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW (2015) The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train 50(6):589–595

    PubMed  PubMed Central  Google Scholar 

  125. Pallis M, Svoboda SJ, Cameron KL, Owens BD (2012) Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States military academy. Am J Sports Med 40(6):1242–1246

    PubMed  Google Scholar 

  126. Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R (2013) Pain and effusion and quadriceps activation and strength. J Athl Train 48(2):186–191

    PubMed  PubMed Central  Google Scholar 

  127. Papageorgiou CD, Kostopoulos VK, Moebius UG, Petropoulou KA, Georgoulis AD, Soucacos PN (2001) Patellar fractures associated with medial-third bone-patellar tendon-bone autograft ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 9(3):151–154

    CAS  PubMed  Google Scholar 

  128. Park HB, Koh M, Cho SH, Hutchinson B, Lee B (2005) Mapping the rat somatosensory pathway from the anterior cruciate ligament nerve endings to the cerebrum. J Orthop Res 23(6):1419–1424

    PubMed  Google Scholar 

  129. Park MJ, Lee MC, Seong SC (2001) A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. Int Orthop 25(1):35–39

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Park SS, Dwyer T, Congiusta F, Whelan DB, Theodoropoulos J (2015) Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am J Sports Med 43(1):226–235

    PubMed  Google Scholar 

  131. Paterno MV (2017) Non-operative care of the patient with an ACL-deficient knee. Curr Rev Musculoskelet Med 10(3):322–327

    PubMed  PubMed Central  Google Scholar 

  132. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22(2):116–121

    PubMed  PubMed Central  Google Scholar 

  133. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978

    PubMed  PubMed Central  Google Scholar 

  134. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM et al (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med 42(2):285–291

    PubMed  Google Scholar 

  135. Peterson DC, Ayeni OR (2016) Pediatric anterior cruciate ligament reconstruction outcomes. Curr Rev Musculoskelet Med 9(4):339–347

    PubMed  PubMed Central  Google Scholar 

  136. Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA (2015) Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train 50(6):665–674

    PubMed  PubMed Central  Google Scholar 

  137. Pietrosimone BG, Lepley AS, Ericksen HM, Gribble PA, Levine J (2013) Quadriceps strength and corticospinal excitability as predictors of disability after anterior cruciate ligament reconstruction. J Sport Rehabil 22(1):1–6

    PubMed  Google Scholar 

  138. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320-1325.e1326

    PubMed  Google Scholar 

  139. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42(2):278–284

    PubMed  Google Scholar 

  140. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ (2014) Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med 42(11):2769–2776

    PubMed  Google Scholar 

  141. Reid JS, Hanks GA, Kalenak A, Kottmeier S, Aronoff V (1992) The Ellison iliotibial-band transfer for a torn anterior cruciate ligament of the knee. Long-term follow-up. J Bone Joint Surg Am 74(9):1392–1402

    CAS  PubMed  Google Scholar 

  142. Robertson GA, Coleman SG, Keating JF (2009) Knee stiffness following anterior cruciate ligament reconstruction: the incidence and associated factors of knee stiffness following anterior cruciate ligament reconstruction. Knee 16(4):245–247

    CAS  PubMed  Google Scholar 

  143. Robson AW (1903) VI. Ruptured crucial ligaments and their repair by operation. Ann Surg 37(5):716–718

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB (2019) Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med 47(9):2086–2092

    PubMed  Google Scholar 

  145. Scholten RJ, Opstelten W, van der Plas CG, Bijl D, Deville WL, Bouter LM (2003) Accuracy of physical diagnostic tests for assessing ruptures of the anterior cruciate ligament: a meta-analysis. J Fam Pract 52(9):689–694

    PubMed  Google Scholar 

  146. Schreiber VM, van Eck CF, Fu FH (2010) Anatomic double-bundle ACL reconstruction. Sports Med Arthrosc Rev 18(1):27–32

    PubMed  Google Scholar 

  147. Schutte MJ, Dabezies EJ, Zimny ML, Happel LT (1987) Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg Am 69(2):243–247

    CAS  PubMed  Google Scholar 

  148. Schwartz HE, Matava MJ, Proch FS, Butler CA, Ratcliffe A, Levy M et al (2006) The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am J Sports Med 34(11):1747–1755

    PubMed  Google Scholar 

  149. Sheean AJ, Lian J, Tisherman R, Meredith SJ, de Sa D, Lynch A et al (2020) Augmentation of anatomic anterior cruciate ligament reconstruction with lateral extra-articular tenodesis does not significantly affect rotatory knee laxity: a time zero, in vivo kinematic analysis. Am J Sports Med 48(14):3495–3502

    PubMed  Google Scholar 

  150. Shelbourne KD, Gray T (2009) Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med 37(3):471–480

    PubMed  Google Scholar 

  151. Shelbourne KD, Urch SE, Gray T, Freeman H (2012) Loss of normal knee motion after anterior cruciate ligament reconstruction is associated with radiographic arthritic changes after surgery. Am J Sports Med 40(1):108–113

    PubMed  Google Scholar 

  152. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31(3):541–554

    PubMed  Google Scholar 

  153. Smith TO, Postle K, Penny F, McNamara I, Mann CJ (2014) Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment. Knee 21(2):462–470

    CAS  PubMed  Google Scholar 

  154. Snaebjörnsson T, Hamrin-Senorski E, Svantesson E, Karlsson L, Engebretsen L, Karlsson J et al (2019) Graft diameter and graft type as predictors of anterior cruciate ligament revision: a cohort study including 18,425 patients from the Swedish and Norwegian National Knee Ligament Registries. J Bone Joint Surg Am 101(20):1812–1820

    PubMed  Google Scholar 

  155. Snaebjörnsson T, Hamrin Senorski E, Ayeni OR, Alentorn-Geli E, Krupic F, Norberg F et al (2017) Graft diameter as a predictor for revision anterior cruciate ligament reconstruction and KOOS and EQ-5D values: a cohort study from the Swedish National Knee Ligament Register based on 2240 patients. Am J Sports Med 45(9):2092–2097

    PubMed  Google Scholar 

  156. Solomon DH, Simel DL, Bates DW, Katz JN, Schaffer JL (2001) The rational clinical examination. Does this patient have a torn meniscus or ligament of the knee? Value of the physical examination. JAMA 286(13):1610–1620

    CAS  PubMed  Google Scholar 

  157. Song GY, Ni QK, Zheng T, Zhang ZJ, Feng H, Zhang H (2020) Slope-reducing tibial osteotomy combined with primary anterior cruciate ligament reconstruction produces improved knee stability in patients with steep posterior tibial slope, excessive anterior tibial subluxation in extension, and chronic meniscal posterior horn tears. Am J Sports Med 48(14):3486–3494

    PubMed  Google Scholar 

  158. Sonnery-Cottet B, Haidar I, Rayes J, Fradin T, Ngbilo C, Vieira TD et al (2021) Long-term graft rupture rates after combined ACL and anterolateral ligament reconstruction versus isolated ACL reconstruction: a matched-pair analysis from the SANTI study group. Am J Sports Med 49(11):2889–2897

    PubMed  Google Scholar 

  159. Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BH, Murphy CG, Claes S (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43(7):1598–1605

    PubMed  Google Scholar 

  160. Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S et al (2015) Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med 43(9):2189–2197

    PubMed  Google Scholar 

  161. Stein DA, Hunt SA, Rosen JE, Sherman OH (2002) The incidence and outcome of patella fractures after anterior cruciate ligament reconstruction. Arthroscopy 18(6):578–583

    PubMed  Google Scholar 

  162. Takeuchi S, Rothrauff BB, Taguchi M, Kanto R, Onishi K, Fu FH (2021) In situ cross-sectional area of the quadriceps tendon using preoperative magnetic resonance imaging significantly correlates with the intraoperative diameter of the quadriceps tendon autograft. Knee Surg Sports Traumatol Arthrosc 29(3):742–749

    PubMed  Google Scholar 

  163. Tan SH, Lau BP, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions: a systematic review and meta-analysis. Am J Sports Med 44(1):242–254

    PubMed  Google Scholar 

  164. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB (2015) Revision risk after allograft anterior cruciate ligament reconstruction: association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med 43(11):2696–2705

    PubMed  Google Scholar 

  165. Thein R, Boorman-Padgett J, Stone K, Wickiewicz TL, Imhauser CW, Pearle AD (2016) Biomechanical assessment of the anterolateral ligament of the knee: a secondary restraint in simulated tests of the pivot shift and of anterior stability. J Bone Joint Surg Am 98(11):937–943

    PubMed  Google Scholar 

  166. Theologis AA, Kuo D, Cheng J, Bolbos RI, Carballido-Gamio J, Ma CB et al (2011) Evaluation of bone bruises and associated cartilage in anterior cruciate ligament-injured and -reconstructed knees using quantitative t(1ρ) magnetic resonance imaging: 1-year cohort study. Arthroscopy 27(1):65–76

    PubMed  Google Scholar 

  167. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM (2016) Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport 19(1):7–11

    PubMed  Google Scholar 

  168. Thompson SM, Salmon LJ, Waller A, Linklater J, Roe JP, Pinczewski LA (2016) Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. Am J Sports Med 44(12):3083–3094

    PubMed  Google Scholar 

  169. Tian S, Wang B, Liu L, Wang Y, Ha C, Li Q et al (2016) Irradiated hamstring tendon allograft versus autograft for anatomic double-bundle anterior cruciate ligament reconstruction: midterm clinical outcomes. Am J Sports Med 44(10):2579–2588

    PubMed  Google Scholar 

  170. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L (2005) Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum 52(1):120–127

    CAS  PubMed  Google Scholar 

  171. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17(5):461–476

    CAS  PubMed  Google Scholar 

  172. Tsoukas D, Fotopoulos V, Basdekis G, Makridis KG (2016) No difference in osteoarthritis after surgical and non-surgical treatment of ACL-injured knees after 10 years. Knee Surg Sports Traumatol Arthrosc 24(9):2953–2959

    PubMed  Google Scholar 

  173. van Melick N, van Cingel RE, Brooijmans F, Neeter C, van Tienen T, Hullegie W et al (2016) Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 50(24):1506–1515

    PubMed  Google Scholar 

  174. Vaswani R, Meredith SJ, Lian J, Li R, Nickoli M, Fu FH et al (2020) Intercondylar notch size can be predicted on preoperative magnetic resonance imaging. Arthrosc Sports Med Rehabil 2(1):e17–e22

    PubMed  Google Scholar 

  175. Ventura A, Legnani C, Terzaghi C, Borgo E (2012) Single- and double-bundle anterior cruciate ligament reconstruction in patients aged over 50 years. Arthroscopy 28(11):1702–1709

    PubMed  Google Scholar 

  176. Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36(5):927–933

    PubMed  Google Scholar 

  177. Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44(11):2827–2832

    PubMed  Google Scholar 

  178. Webster KE, Hewett TE (2018) Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J Orthop Res 36(10):2696–2708

    PubMed  Google Scholar 

  179. Webster KE, Nagelli CV, Hewett TE, Feller JA (2018) Factors associated with psychological readiness to return to sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 46(7):1545–1550

    PubMed  PubMed Central  Google Scholar 

  180. Wellsandt E, Failla MJ, Axe MJ, Snyder-Mackler L (2018) Does anterior cruciate ligament reconstruction improve functional and radiographic outcomes over nonoperative management 5 years after injury? Am J Sports Med 46(9):2103–2112

    PubMed  PubMed Central  Google Scholar 

  181. Wellsandt E, Khandha A, Capin J, Buchanan TS, Snyder-Mackler L (2020) Operative and nonoperative management of anterior cruciate ligament injury: differences in gait biomechanics at 5 years. J Orthop Res 38(12):2675–2684

    PubMed  PubMed Central  Google Scholar 

  182. West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13(3):197–207

    PubMed  Google Scholar 

  183. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876

    PubMed  PubMed Central  Google Scholar 

  184. Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L (2005) Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med 33(3):402–407

    PubMed  Google Scholar 

  185. Wilson WT, Hopper GP, Byrne PA, MacKay GM (2016) Anterior cruciate ligament repair with internal brace ligament augmentation. Surg Technol Int 29:273–278

    PubMed  Google Scholar 

  186. Wright RW, Haas AK, Anderson J, Calabrese G, Cavanaugh J, Hewett TE et al (2015) Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines. Sports Health 7(3):239–243

    PubMed  PubMed Central  Google Scholar 

  187. Wylie JD, Marchand LS, Burks RT (2017) Etiologic factors that lead to failure after primary anterior cruciate ligament surgery. Clin Sports Med 36(1):155–172

    PubMed  Google Scholar 

  188. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22(2):100–110

    PubMed  Google Scholar 

  189. Yamaguchi KT, Cheung EC, Markolf KL, Boguszewski DV, Mathew J, Lama CJ et al (2018) Effects of anterior closing wedge tibial osteotomy on anterior cruciate ligament force and knee kinematics. Am J Sports Med 46(2):370–377

    PubMed  Google Scholar 

  190. Yoon KH, Yoo JH, Kim KI (2011) Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J Bone Joint Surg Am 93(16):1510–1518

    PubMed  Google Scholar 

  191. Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, Roberti di Sarsina T, Raggi F, Signorelli C et al (2017) Over-the-top ACL reconstruction plus extra-articular lateral tenodesis with hamstring tendon grafts: prospective evaluation with 20-year minimum follow-up. Am J Sports Med 45(14):3233–3242

    PubMed  Google Scholar 

  192. Zakko P, van Eck CF, Guenther D, Irrgang JJ, Fu FH (2017) Can we predict the size of frequently used autografts in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 25(12):3704–3710

    PubMed  Google Scholar 

  193. Zebis MK, Aagaard P, Andersen LL, Hölmich P, Clausen MB, Brandt M et al (2021) First-time anterior cruciate ligament injury in adolescent female elite athletes: a prospective cohort study to identify modifiable risk factors. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06595-8

    Article  PubMed  Google Scholar 

  194. Zeng C, Gao SG, Li H, Yang T, Luo W, Li YS et al (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32(1):153-163.e118

    PubMed  Google Scholar 

  195. Zink EJ, Trumper RV, Smidt CR, Rice EL, Reiser RF 2nd (2005) Gender comparison of knee strength recovery following ACL reconstruction with contralateral patellar tendon graft. Biomed Sci Instrum 41:323–328

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to the life and legacy of Dr. Freddie Fu. Through his charisma, love of orthopaedics, and passion for teaching, Dr. Fu directly touched the lives of tens of thousands of orthopaedic surgeons, young and old, domestic and from afar. His lessons of respecting the past, doing the right thing for patients, and working hard with a smile on your face are qualities that each of us strive to achieve in both our careers as well as our personal lives. Mentors like Dr. Fu come once in a lifetime. Although he is irreplaceable, he has forged a path for many of us to continue his legacy and carry forth the lessons he so graciously taught us during his lifetime.

Funding

There was no funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VM, IDE, EMN, JFD, GAL, JDH, and FDV contributed to manuscript writing and editing. SZ, JJI, and JK contributed to editing. FHF contributed to the groundwork for this manuscript and inspiration for its production. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ian D. Engler.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musahl, V., Engler, I.D., Nazzal, E.M. et al. Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc 30, 34–51 (2022). https://doi.org/10.1007/s00167-021-06825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06825-z

Keywords

Navigation