Skip to main content

Advertisement

Log in

The J-sign and the body mass index determine the disease-specific quality of life in patients with lateral patellar instability

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine which risk factors for patellar instability contribute most relevantly to patients’ subjective disease-specific quality of life, aiming to provide implications on the overall treatment decision-making process.

Methods

A total of 182 consecutive patients (male/female 70/112; mean age 23.6 ± 7.3 years) with a history of patellar instability were prospectively enrolled in this study. Patient age, body mass index (BMI), number of dislocations, reversed dynamic patellar apprehension test (ReDPAT), J-sign severity, and pathoanatomic risk factors of patellar instability were assessed. The statistical analysis evaluated the relationships among those variables and determined their ability to predict the Banff Patellofemoral Instability Instrument 2.0 (BPII 2.0) as a disease-specific quality of life measure. Using Spearman correlation, ANOVA and Fisher’s exact test, all variables with ANOVA p ≤ 0.1 or Spearman’s abs (rho) > 0.1 were entered into a multivariate linear model using backward-stepwise selection.

Results

Analysis of the individual variables’ ability to predict BPII 2.0 score values revealed ‘age’, ‘BMI’, ‘ReDPAT’, ‘high grade of trochlear dysplasia’, and ‘high-grade J-Sign’ as possible relevant factors. Backward-stepwise multivariate regression analysis yielded a final parsimonious model that included the factors ‘BMI’ and ‘J-Sign (Grade II and III)’ as the most relevant parameters influencing BPII 2.0 score values (adjusted R2 = 0.418; p < 0.001), with a cutoff value for BMI found at 28 kg/m2 (p = 0.01).

Conclusion

The results of this study indicate that in patients with lateral patellar instability, a high-grade J-sign and an increased BMI significantly impact subjective disease-specific quality of life.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Raw data can be made available upon request. Data analysis protocols are listed in the “Statistical Analysis Supplement file”.

References

  1. Hiemstra LA, Kerslake S, Lafave MR (2019) Influence of risky pathoanatomy and demographic factors on clinical outcomes after isolated medial patellofemoral ligament reconstruction: a regression analysis. Am J Sports Med 47(12):2904–2909

    Article  PubMed  Google Scholar 

  2. Post WR, Fithian DC (2018) Patellofemoral instability: a consensus statement from the AOSSM/PFF patellofemoral instability workshop. Orthop J Sport Med 6(1):1–5

    Google Scholar 

  3. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2018) High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc 26(4):1037–1043

    PubMed  Google Scholar 

  4. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2018) Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health 10(2):146–151

    Article  PubMed  Google Scholar 

  5. Ling DI, Brady JM, Arendt E, Tompkins M, Agel J, Askenberger M, Balcarek P, Parikh S, Stein BES (2021) Development of a multivariable model based on individual risk factors for recurrent lateral patellar dislocation. J Bone Joint Surg Am 103(7):586–592

    Article  PubMed  Google Scholar 

  6. Liebensteiner MC, Dirisamer F, Balcarek P (2017) Guidelines for treatment of lateral patella dislocations in skeletally mature patients. Am J Orthop (Belle Mead NJ) 46(2):86–96

    Google Scholar 

  7. Weber AE, Nathani A, Dines JS, Allen AA, Shubin-Stein BE, Arendt EA, Bedi A (2016) An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Joint Surg Am 98(5):417–427

    Article  PubMed  Google Scholar 

  8. Zimmerer A, Sobau C, Balcarek P (2018) Recent developments in evaluation and treatment of lateral patellar instability. J Exp Orthop 5(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geierlehner A, Liebensteiner M, Schöttle P, Dirisamer F (2020) Prevailing disagreement in the treatment of complex patellar instability cases: an online expert survey of the AGA Knee-Patellofemoral Committee. Knee Surg Sports Traumatol Arthrosc 28(8):2697–2705

    Article  CAS  PubMed  Google Scholar 

  10. Arendt EA, Askenberger M, Agel J, Tompkins MA (2018) Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 46(14):3385–3390

    Article  PubMed  Google Scholar 

  11. Balcarek P, Oberthür S, Hopfensitz S, Frosch S, Walde TA, Wachowski MM, Schüttrumpf JP, Stürmer KM (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22(10):2308–2314

    Article  PubMed  Google Scholar 

  12. Balcarek P, Rehn S, Howells NR, Eldridge JD, Kita K, Dejour D, Nelitz M, Banke IJ, Lambrecht D, Harden M, Friede T (2017) Results of medial patellofemoral ligament reconstruction compared with trochleoplasty plus individual extensor apparatus balancing in patellar instability caused by severe trochlear dysplasia: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 25(12):3869–3877

    Article  PubMed  Google Scholar 

  13. Franciozi CE, Ambra LF, Albertoni LJB, Debieux P, Rezende FC, de Oliveira MA, de Castro FM, Luzo MVM (2017) Increased femoral anteversion influence over surgically treated recurrent patellar instability patients. Arthroscopy 33(3):633–640

    Article  PubMed  Google Scholar 

  14. Hevesi M, Heidenreich MJ, Camp CL, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2019) The recurrent instability of the patella score: a statistically based model for prediction of long-term recurrence risk after first-time dislocation. Arthroscopy 35(2):537–543

    Article  PubMed  Google Scholar 

  15. Colatruglio M, Flanigan DC, Harangody S, Duerr RA, Kaeding CC, Magnussen RA (2020) Identifying patients with patella alta and/or severe trochlear dysplasia through the presence of patellar apprehension in higher degrees of flexion. Orthop J Sport Med. https://doi.org/10.1177/2325967120925486

    Article  Google Scholar 

  16. Zhang ZJ, Zhang H, Song GY, Wang X, Zhang J, Zheng T, Ni Q, Feng H (2020) A high-grade J sign is more likely to yield higher postoperative patellar laxity and residual maltracking in patients with recurrent patellar dislocation treated with derotational distal femoral osteotomy. Am J Sports Med 48(1):117–127

    Article  PubMed  Google Scholar 

  17. Zhang ZJ, Zhang H, Song GY, Zheng T, Feng H (2020) A pre-operative grade 3 J-sign adversely affects short-term clinical outcome and is more likely to yield MPFL residual graft laxity in recurrent patellar dislocation. Knee Surg Sports Traumatol Arthrosc 28(7):2147–2156

    Article  PubMed  Google Scholar 

  18. Zimmermann F, Liebensteiner MC, Balcarek P (2019) The reversed dynamic patellar apprehension test mimics anatomical complexity in lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 27(2):604–610

    Article  PubMed  Google Scholar 

  19. Sappey-Marinier E, Sonnery-Cottet B, O’Loughlin P, Ouanezar H, Fernandes LR, Kouevidjin B, Thaunat M (2019) Clinical outcomes and predictive factors for failure with isolated MPFL reconstruction for recurrent patellar instability: a series of 211 reconstructions with a minimum follow-up of 3 years. Am J Sports Med 47(6):1323–1330

    Article  PubMed  Google Scholar 

  20. Post WR (1999) Clinical evaluation of patients with patellofemoral disorders. Arthroscopy 15(8):841–851

    Article  CAS  PubMed  Google Scholar 

  21. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev 15(1):39–46

    Article  PubMed  Google Scholar 

  22. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H (1982) Les rotules basses: a propos de 128 observations. Rev Chir Orthop Reparatrice Appar Mot 68(5):317–325

    CAS  PubMed  Google Scholar 

  23. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40(5):1119–1125

    Article  PubMed  Google Scholar 

  24. Holme TJ, Henckel J, Hartshorn K, Cobb JP, Hart AJ (2015) Computed tomography scanogram compared to long leg radiograph for determining axial knee alignment. Acta Orthop 86(4):440–443

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becher C, Attal R, Balcarek P, Dirisamer F, Liebensteiner M, Pagenstert G, Schöttle P, Seitlinger G, Wagner D (2018) Successful adaption of the Banff Patella Instability Instrument (BPII) 2.0 into German. Knee Surg Sports Traumatol Arthrosc 26(9):2679–2684

    Article  PubMed  Google Scholar 

  26. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49(12):1373–1379

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ (2016) Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 24(11):3634–3641

    Article  PubMed  Google Scholar 

  28. Biyani R, Elias JJ, Saranathan A, Feng H, Guseila LM, Morscher MA, Jones KC (2014) Anatomical factors influencing patellar tracking in the unstable patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 22(10):2334–2341

    Article  PubMed  Google Scholar 

  29. Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE (2013) Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res 31(3):448–457

    Article  PubMed  Google Scholar 

  30. Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ (2015) Correlation between changes in tibial tuberosity-trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthroscopy 31(9):1748–1755

    Article  PubMed  Google Scholar 

  31. Zhang ZJ, Zhang H, Song GY, Zheng T, Ni QK, Feng H (2020) Increased femoral anteversion is associated with inferior clinical outcomes after MPFL reconstruction and combined tibial tubercle osteotomy for the treatment of recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc 28(7):2261–2269

    Article  PubMed  Google Scholar 

  32. Pal S, Draper CE, Fredericson M, Gold GE, Delp SL, Beaupre GS, Besier TF (2011) Patellar maltracking correlates with vastus medialis activation delay in patellofemoral pain patients. Am J Sports Med 39(3):590–598

    Article  PubMed  Google Scholar 

  33. Elias JJ, Jones KC, Rezvanifar SC, Gabra JN, Morscher MA, Cosgarea AJ (2018) Dynamic tracking influenced by anatomy following medial patellofemoral ligament reconstruction: computational simulation. Knee 25(2):262–270

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gobbi RG, Demange MK, de Ávila LFR, Filho JABA, Moreno RA, Gutierrez MA, de Sá RM, Tírico LEP, Pécora JR, Camanho GL (2017) Patellar tracking after isolated medial patellofemoral ligament reconstruction: dynamic evaluation using computed tomography. Knee Surg Sports Traumatol Arthrosc 25(10):3197–3205

    Article  PubMed  Google Scholar 

  35. Balcarek P, Radebold T, Schulz X, Vogel D (2019) Geometry of torsional malalignment syndrome: trochlear dysplasia but not torsion predicts lateral patellar instability. Orthop J Sport Med. https://doi.org/10.1177/2325967119829790

    Article  Google Scholar 

  36. Fitzpatrick CK, Steensen RN, Tumuluri A, Trinh T, Bentley J, Rullkoetter PJ (2016) Computational analysis of factors contributing to patellar dislocation. J Orthop Res 34(3):444–453

    Article  PubMed  Google Scholar 

  37. Liebensteiner MC, Ressler J, Seitlinger G, Djurdjevic T, El Attal R, Ferlic PW (2016) High femoral anteversion is related to femoral trochlea dysplasia. Arthroscopy 32(11):2295–2299

    Article  PubMed  Google Scholar 

  38. Dowsey MM, Liew D, Stoney JD, Choong PF (2010) The impact of pre-operative obesity on weight change and outcome in total knee replacement: a prospective study of 529 consecutive patients. J Bone Joint Surg Br 92(4):513–520

    Article  CAS  PubMed  Google Scholar 

  39. Snaebjörnsson T, Svantesson E, Sundemo D, Westin O, Sansone M, Engebretsen L, Hamrin-Senorski E (2019) Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: a cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients. Knee Surg Sports Traumatol Arthrosc 27(11):3583–3591

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ulusoy GR, Kızılgöz V, Sivrioğlu AK (2019) Relationship between body mass index and articular injuries accompanying primary anterior cruciate ligament tear in male knees: a retrospective observational study. J Knee Surg 33(11):1157–1162

    PubMed  Google Scholar 

  41. Hart HF, Barton CJ, Khan KM, Riel H, Crossley KM (2017) Is body mass index associated with patellofemoral pain and patellofemoral osteoarthritis? A systematic review and meta-regression and analysis. Br J Sports Med 51(10):781–790

    Article  PubMed  Google Scholar 

  42. Vincent HK, Lamb KM, Day TI, Tillman SM, Vincent KR, George SZ (2010) Morbid obesity is associated with fear of movement and lower quality of life in patients with knee pain-related diagnoses. PM R 2(8):713–722

    Article  PubMed  Google Scholar 

  43. Fontaine KR, Barofsky I (2001) Obesity and health-related quality of life. Obes Rev 2(3):173–182

    Article  CAS  PubMed  Google Scholar 

  44. Taylor VH, Forhan M, Vigod SN, McIntyre RS, Morrison KM (2013) The impact of obesity on quality of life. Best Pract Res Clin Endocrinol Metab 27(2):139–146

    Article  PubMed  Google Scholar 

  45. Hiemstra LA, O’Brien CL, Lafave MR, Kerslake S (2021) Common physical examination tests for patellofemoral instability demonstrate weak inter-rater reliability. Arthrosc Sports Med Rehabil 3(3):673–677

    Article  Google Scholar 

  46. Smith TO, Clark A, Neda S, Arendt EA, Post WR, Grelsamer RP, Dejour D, Alqvist KF, Donell ST (2012) The intra- and inter-observer reliability of the physical examination methods used to assess patients with patellofemoral joint instability. Knee 19(4):404–410

    Article  PubMed  Google Scholar 

  47. Zimmermann F, Börtlein J, Milinkovic DD, Balcarek P (2020) Patient-reported outcomes after revision surgery for failed medial patellofemoral ligament reconstruction: a matched-pair analysis including correction of predisposing factors. Am J Sports Med 48(14):3566–3572

    Article  PubMed  Google Scholar 

Download references

Funding

No funding has been received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

DDM: data acquisition, data analysis, data interpretation, writing the paper, final approval; IJ: statistical analysis, data interpretation, final approval; FZ: data analysis, data interpretation, final approval; PB: study design, data analysis, data interpretation, writing the paper, final approval.

Corresponding author

Correspondence to Danko Dan Milinkovic.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article. The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Baden-Württemberg, Germany (F-2019-070).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milinkovic, D.D., Jovandic, I., Zimmermann, F. et al. The J-sign and the body mass index determine the disease-specific quality of life in patients with lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 30, 1672–1678 (2022). https://doi.org/10.1007/s00167-021-06705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06705-6

Keywords

Navigation