Skip to main content
Log in

Component gap measurement reflects the planned gap balance during total knee arthroplasty more accurately and reliably than bone surface gap measurement

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study aimed to compare the reliability of two gap assessment methods (component and bone surface gap measurement vs. planned gap balance) and identify the contributors to component gaps other than planned gaps.

Methods

The prospectively collected data for 122 consecutive primary total knee arthroplasties (TKAs; 114 patients). After femoral planning for gap balancing, the medial and lateral planned gaps were calculated (planned gap). The established medial extension and flexion gaps (MEG and MFG, respectively) and lateral extension and flexion gaps (LEG and LFG, respectively) were measured with and without the TKA components (bone surface and component gaps) at 0° and 90° flexion. The intraclass and Pearson correlation coefficients for each gap measurement method were assessed using planned gap values, and multiple linear regression analyses were performed to identify the contributors to component gaps.

Results

Compared with the bone surface gap measurement, the component gap measurement showed higher reliability and stronger correlation with the planned gap balance for each gap. The changes in the medial posterior femoral offset contributed to the MEG and LEG, whereas those in the joint line height contributed to the LEG. The changes in the hip–knee–ankle angle and lateral posterior femoral offset contributed to the LFG.

Conclusion

Component gap measurements of the established gap more accurately and reliably reflect the planned gap balance than do bone surface gap measurements. The established gaps are affected by several factors other than femoral planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HKA:

Hip–knee–ankle

ICC:

Intraclass correlation coefficient

JLH:

Joint line height

KSKS:

Knee Society Knee Score

KSFS:

Knee Society Function Score

LEG:

Lateral extension gap

LFG:

Lateral flexion gap

LPFO:

Lateral posterior femoral offset

MCL:

Medial collateral ligament

MEG:

Medial extension gap

MFG:

Medial flexion gap

MPFO:

Medial posterior femoral offset

ROM:

Range of motion

TKA:

Total knee arthroplasty

WOMAC:

Western Ontario and McMaster Universities Osteoarthritis index

References

  1. Bae DK, Song SJ (2011) Computer assisted navigation in knee arthroplasty. Clin Orthop Surg 3(4):259–267. https://doi.org/10.4055/cios.2011.3.4.259

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    CAS  PubMed  Google Scholar 

  3. Cooke TD, Sled EA, Scudamore RA (2007) Frontal plane knee alignment: a call for standardized measurement. J Rheumatol 34(9):1796–1801

    PubMed  Google Scholar 

  4. Dorr LD, Boiardo RA (1986) Technical considerations in total knee arthroplasty. Clin Orthop 205:5–11

    Google Scholar 

  5. Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M (2001) Early failures in total knee arthroplasty. Clin Orthop 392:315–318. https://doi.org/10.1097/00003086-200111000-00041

    Article  Google Scholar 

  6. Gejo R, McGarry MH, Jun BJ, Hofer JK, Kimura T, Lee TQ (2010) Biomechanical effects of patellar positioning on intraoperative knee joint gap measurement in total knee arthroplasty. Clin Biomech (Bristol, Avon) 25(4):352–358. https://doi.org/10.1016/j.clinbiomech.2010.01.005

    Article  Google Scholar 

  7. Gejo R, Morita Y, Matsushita I, Sugimori K, Kimura T (2008) Joint gap changes with patellar tendon strain and patellar position during TKA. Clin Orthop 466(4):946–951. https://doi.org/10.1007/s11999-008-0154-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ghosh KM, Merican AM, Iranpour F, Deehan DJ, Amis AA (2009) The effect of overstuffing the patellofemoral joint on the extensor retinaculum of the knee. Knee Surg Sports Traumatol Arthrosc 17(10):1211–1216. https://doi.org/10.1007/s00167-009-0830-0

    Article  CAS  PubMed  Google Scholar 

  9. Griffin FM, Insall JN, Scuderi GR (2000) Accuracy of soft tissue balancing in total knee arthroplasty. J Arthroplast 15(8):970–973. https://doi.org/10.1054/arth.2000.6503

    Article  CAS  Google Scholar 

  10. Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclerq V, Hess S (2019) Functional knee phenotypes: a novel classification for phenotyping the coronal lower limb alignment based on the native alignment in young non-osteoarthritic patients. Knee Surg Sports Traumatol Arthrosc 27(5):1394–1402

    Article  PubMed  Google Scholar 

  11. Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclercq V, Hess S (2019) Phenotyping the knee in young non-osteoarthritic knees shows a wide distribution of femoral and tibial coronal alignment. Knee Surg Sports Traumatol Arthrosc 27(5):1385–1393

    Article  PubMed  Google Scholar 

  12. Mitsuyasu H, Matsuda S, Fukagawa S, Okazaki K, Tashiro Y, Kawahara S, Nakahara H, Iwamoto Y (2011) Enlarged post-operative posterior condyle tightens extension gap in total knee arthroplasty. J Bone Jt Surg Br 93(9):1210–1216. https://doi.org/10.1302/0301-620x.93b9.25822

    Article  CAS  Google Scholar 

  13. Hanada H, Whiteside LA, Steiger J, Dyer P, Naito M (2007) Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop 462:137–142. https://doi.org/10.1097/BLO.0b013e3180dc92e7

    Article  PubMed  Google Scholar 

  14. Hughston JC, Jacobson KE (1985) Chronic posterolateral rotatory instability of the knee. J Bone Jt Surg Am 67(3):351–359

    Article  CAS  Google Scholar 

  15. Insall J, Tria AJ, Scott WN (1979) The total condylar knee prosthesis: the first 5 years. Clin Orthop 145:68–77

    Google Scholar 

  16. Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop 192:13–22

    Article  Google Scholar 

  17. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop 248:13–14

    Article  Google Scholar 

  18. Insall JN, Easley ME (2001) Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN (ed) Surgery of the knee, 3rd edn. Churchill Livingston, Philadelphia, pp 1553–1557

    Google Scholar 

  19. Kadoya Y, Kobayashi A, Komatsu T, Nakagawa S, Yamano Y (2001) Effects of posterior cruciate ligament resection on the tibiofemoral joint gap. Clin Orthop 391:210–217. https://doi.org/10.1097/00003086-200110000-00023

    Article  Google Scholar 

  20. Kuo AW, Chen DB, Wood J, MacDessi SJ (2020) Modern total knee arthroplasty designs do not reliably replicate anterior femoral morphology. Knee Surg Sports Traumatol Arthrosc 28(9):2808–2015. https://doi.org/10.1007/s00167-019-05610-3

    Article  PubMed  Google Scholar 

  21. Lee S-Y, Lim H-C, Jang K-M, Bae J-H (2017) What factors are associated with femoral component internal rotation in TKA using the gap balancing technique? Clin Orthop 475(8):1999–2010. https://doi.org/10.1007/s11999-017-5319-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matsumoto T, Kuroda R, Kubo S, Muratsu H, Mizuno K, Kurosaka M (2009) The intra-operative joint gap in cruciate-retaining compared with posterior-stabilised total knee replacement. J Bone Jt Surg Br 91(4):475–480. https://doi.org/10.1302/0301-620X.91B4.21862

    Article  CAS  Google Scholar 

  23. Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kuroda R, Yoshiya S, Kurosaka M (2006) Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J Biomech Eng 128(6):867–871. https://doi.org/10.1115/1.2354201

    Article  PubMed  Google Scholar 

  24. Matsumoto T, Muratsu H, Tsumura N, Mizuno K, Kurosaka M, Kuroda R (2009) Soft tissue balance measurement in posterior-stabilized total knee arthroplasty with a navigation system. J Arthroplast 24(3):358–364. https://doi.org/10.1016/j.arth.2008.01.001

    Article  Google Scholar 

  25. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA (2009) Soft tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg 17(12):766–774. https://doi.org/10.5435/00124635-200912000-00005

    Article  PubMed  Google Scholar 

  26. Mihalko WM, Whiteside LA, Krackow KA (2003) Comparison of ligament-balancing techniques during total knee arthroplasty. J Bone Joint Surg Am 85-A(Suppl 4):132–135. https://doi.org/https://doi.org/10.2106/00004623-200300004-00018

  27. Morris BA, D’Lima DD, Slamin J, Kovacevic N, Arms SW, Townsend CP, Colwell Jr CW (2001) e-Knee: evolution of the electronic knee prosthesis. Telemetry technology development. J Bone Joint Surg Am 83-A(Suppl 2):62–66. https://doi.org/https://doi.org/10.2106/00004623-200100021-00013

  28. Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28(3):282–296. https://doi.org/10.1177/03635465000280030201

    Article  CAS  PubMed  Google Scholar 

  29. Okamoto Y, Nakajima M, Jotoku T, Otsuki S, Neo M (2016) Capsular release around the intercondylar notch increases the extension gap in posterior-stabilized rotating-platform total knee arthroplasty. Knee 23(4):730–735. https://doi.org/10.1016/j.knee.2015.11.022

    Article  PubMed  Google Scholar 

  30. Pierson JL, Ritter MA, Keating EM, Faris PM, Meding JB, Berend ME, Davis KE (2007) The effect of stuffing the patellofemoral compartment on the outcome of total knee arthroplasty. J Bone Jt Surg Am 89(10):2195–2203. https://doi.org/10.2106/JBJS.E.01223

    Article  Google Scholar 

  31. Rhee SJ, Seo CH, Suh JT (2013) Navigation-assisted total knee arthroplasty for patients with extra-articular deformity. Knee Surg Relat Res 25(4):194–201. https://doi.org/10.5792/ksrr.2013.25.4.194

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosa JM, Oliveira M, Vide J, Carvalho MM, Duarte A, Cruz HAd, Fontes AP, Sousa JP (2019) The role of the femoral anterior offset index on the degree of flexion in total knee arthroplasty. Int J Res Orthop 5(3):376–381. https://doi.org/https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20191780

  33. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop 404:7–13. https://doi.org/10.1097/00003086-200211000-00003

    Article  Google Scholar 

  34. Unitt L, Sambatakakis A, Johnstone D, Briggs TW, Balancer Study G (2008) Short-term outcome in total knee replacement after soft tissue release and balancing. J Bone Jt Surg Br 90(2):159–165. https://doi.org/10.1302/0301-620X.90B2.19327

    Article  CAS  Google Scholar 

  35. Wallace AL, Harris ML, Walsh WR, Bruce WJ (1998) Intraoperative assessment of tibiofemoral contact stresses in total knee arthroplasty. J Arthroplasty 13(8):923–927. https://doi.org/10.1016/s0883-5403(98)90200-5

    Article  CAS  PubMed  Google Scholar 

  36. Winemaker MJ (2002) Perfect balance in total knee arthroplasty: the elusive compromise. J Arthroplast 17(1):2–10. https://doi.org/10.1054/arth.2002.29321

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: SB Han and KH Shin; data collection: KH Shin and KM Jang; analysis and interpretation: KH Shin; writing the article: KH Shin; critical revision of the article for intellectual content: SB Han and KH Shin; final approval of the article: SB Han; statistical analysis: KH Shin; obtained funding: not applicable; overall responsibility: KH Shin, KM Jang and SB Han.

Corresponding author

Correspondence to Seung-Beom Han.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest regarding the preparation of the manuscript. No funding source is applicable to any part of this study.

Ethical approval

This study was approved by the institutional review board of Anam Hospital of Korea University Medical Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, KH., Jang, KM. & Han, SB. Component gap measurement reflects the planned gap balance during total knee arthroplasty more accurately and reliably than bone surface gap measurement. Knee Surg Sports Traumatol Arthrosc 30, 584–592 (2022). https://doi.org/10.1007/s00167-020-06324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06324-7

Keywords

Navigation