Skip to main content
Log in

Extrusions do not affect degenerative morphologic changes in lateral meniscus allografts during midterm follow-ups

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate degenerative morphological changes in meniscus allograft after lateral meniscus allograft transplantation (MAT) based on extrusions.

Methods

Ninety-one patients who underwent lateral MAT were divided into extruded and non-extruded groups. Serial magnetic resonance imaging scans obtained 6 weeks, 1 year, and at the last follow-up (midterm, 3–7 years) post-surgery were evaluated retrospectively. Degenerative morphological changes at each time point in each group were compared using the postoperative meniscal width, thickness, and intrameniscal signal intensity (IMSI) at the anterior horn, mid-body, and posterior horn. The Lysholm scores and meniscal tears based on graft extrusion were also investigated.

Results

The mean age was 33.7 ± 11.1 years (64 men and 27 women). Fifty-three (58%) and 38 knees (42%) were classified into the non-extruded and extruded groups, respectively. The overall meniscal width of the mid-body decreased from 9.6 ± 1.3 to 6.5 ± 1.2 mm (p < 0.01), and IMSI of mid-body was increased from 1.2 ± 0.1 to 1.7 ± 0.1 (p < 0.01) during midterm follow-ups. No significant differences were observed between the meniscal width, thickness, and IMSI at the anterior horn (n.s.), mid-body (n.s.), and posterior horn (n.s.) of the two groups during the midterm follow-ups. The incidence of meniscus tears and Lysholm scores did not differ significantly between the groups during midterm follow-ups.

Conclusion

The overall meniscus width of mid-body decreased while the relative IMSI of mid-body increased during midterm follow-ups after lateral MAT. Meniscal allograft extrusions did not influence postoperative changes in meniscus width, thickness, and relative intrameniscal signal intensity.

Level of evidence

Level III

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP:

Anteroposterior

CI:

Confidence interval

ICC:

Intraclass correlation coefficient

IMSI:

Intrameniscal signal intensity

MAT:

Meniscus allograft transplantation

MRI:

Magnetic resonance image

PACS:

Picture Archiving and Communication System

SD:

Standard deviation

References

  1. Alhalki MM, Hull ML, Howell SM (2000) Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am J Sports Med 28:370–376

    Article  CAS  Google Scholar 

  2. Breitenseher MJ, Trattnig S, Dobrocky I et al (1997) MR imaging of meniscal subluxation in the knee. Acta Radiol 38:876–879

    Article  CAS  Google Scholar 

  3. De Coninck T, Huysse W, Verdonk R, Verstraete K, Verdonk P (2013) Open versus arthroscopic meniscus allograft transplantation: magnetic resonance imaging study of meniscal radial displacement. Arthroscopy 29:514–521

    Article  Google Scholar 

  4. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P (2011) Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc 19:147–157

    Article  Google Scholar 

  5. Englund M, Lohmander LS (2004) Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 50:2811–2819

    Article  CAS  Google Scholar 

  6. Gelber PE, Gonzalez G, Lloreta JL, Reina F, Caceres E, Monllau JC (2008) Freezing causes changes in the meniscus collagen net: a new ultrastructural meniscus disarray scale. Knee Surg Sports Traumatol Arthrosc 16:353–359

    Article  Google Scholar 

  7. Ha JK, Shim JC, Kim DW, Lee YS, Ra HJ, Kim JG (2010) Relationship between meniscal extrusion and various clinical findings after meniscus allograft transplantation. Am J Sports Med 38:2448–2455

    Article  Google Scholar 

  8. Hommen JP, Applegate GR, Del Pizzo W (2007) Meniscus allograft transplantation: ten-year results of cryopreserved allografts. Arthroscopy 23:388–393

    Article  Google Scholar 

  9. Kelly BT, Potter HG, Deng XH et al (2006) Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med 34:1464–1477

    Article  Google Scholar 

  10. Kim JM, Bin SI (2006) Meniscal allograft transplantation after total meniscectomy of torn discoid lateral meniscus. Arthroscopy 22(1344–1350):e1341

    Google Scholar 

  11. Kim NK, Bin SI, Kim JM, Lee CR, Kim JH (2017) Meniscal extrusion does not progress during the midterm follow-up period after lateral meniscal transplantation. Am J Sports Med 45:900–908

    Article  Google Scholar 

  12. Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin SI (2012) Morphologic changes in fresh-frozen meniscus allografts over 1 year: a prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med 40:1384–1391

    Article  Google Scholar 

  13. Lee BS, Chung JW, Kim JM, Kim KA, Bin SI (2012) Width is a more important predictor in graft extrusion than length using plain radiographic sizing in lateral meniscal transplantation. Knee Surg Sports Traumatol Arthrosc 20:179–186

    Article  Google Scholar 

  14. Lee BS, Kim JM, Sohn DW, Bin SI (2013) Review of meniscal allograft transplantation focusing on long-term results and evaluation methods. Knee Surg Relat Res 25:1–6

    Article  Google Scholar 

  15. Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin SI (2008) Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy 24:1115–1121

    Article  Google Scholar 

  16. Lee DH, Kim SB, Kim TH, Cha EJ, Bin SI (2010) Midterm outcomes after meniscal allograft transplantation: comparison of cases with extrusion versus without extrusion. Am J Sports Med 38:247–254

    Article  Google Scholar 

  17. Lee DH, Lee BS, Chung JW et al (2011) Changes in magnetic resonance imaging signal intensity of transplanted meniscus allografts are not associated with clinical outcomes. Arthroscopy 27:1211–1218

    Article  Google Scholar 

  18. Lee DH, Kim JM, Lee BS, Kim KA, Bin SI (2012) Greater axial trough obliquity increases the risk of graft extrusion in lateral meniscus allograft transplantation. Am J Sports Med 40:1597–1605

    Article  Google Scholar 

  19. Lee DH, Lee CR, Jeon JH, Kim KA, Bin SI (2015) Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes. Am J Sports Med 43:213–219

    Article  Google Scholar 

  20. Lee DH (2018) Incidence and extent of graft extrusion following meniscus allograft transplantation. Biomed Res Int 2018:5251910

    PubMed  PubMed Central  Google Scholar 

  21. Lee SM, Bin SI, Kim JM et al (2019) Long-term outcomes of meniscal allograft transplantation with and without extrusion: mean 12.3-year follow-up study. Am J Sports Med 47:815–821

    Article  Google Scholar 

  22. Noyes FR, Barber-Westin SD, Rankin M (2004) Meniscal transplantation in symptomatic patients less than fifty years old. J Bone Joint Surg Am 86:1392–1404

    Article  Google Scholar 

  23. Noyes FR, Barber-Westin SD, Chen RC (2011) Repair of complex and avascular meniscal tears and meniscal transplantation. Instr Course Lect 60:415–437

    PubMed  Google Scholar 

  24. Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687

    Article  CAS  Google Scholar 

  25. Rankin M, Noyes FR, Barber-Westin SD, Hushek SG, Seow A (2006) Human meniscus allografts' in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med 34:98–107

    Article  Google Scholar 

  26. Ryu RK, Dunbar VW, Morse GG (2002) Meniscal allograft replacement: a 1-year to 6-year experience. Arthroscopy 18:989–994

    Article  Google Scholar 

  27. Samitier G, Alentorn-Geli E, Taylor DC et al (2015) Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc 23:310–322

    Article  Google Scholar 

  28. Stoller DW, Martin C, Crues JV 3rd, Kaplan L, Mink JH (1987) Meniscal tears: pathologic correlation with MR imaging. Radiology 163:731–735

    Article  CAS  Google Scholar 

  29. Stoller DW, Cannon WD Jr, Anderson LJ (1997) The knee. In: Stoller DW (ed) Magnetic resonance imaging in orthopaedics and sports medicine, 2nd edn. Lippincott-Raven, Philadelphia, pp 203–442

    Google Scholar 

  30. Stollsteimer GT, Shelton WR, Dukes A, Bomboy AL (2000) Meniscal allograft transplantation: a 1- to 5-year follow-up of 22 patients. Arthroscopy 16:343–347

    Article  CAS  Google Scholar 

  31. Szomor ZL, Martin TE, Bonar F, Murrell GA (2000) The protective effects of meniscal transplantation on cartilage. An experimental study in sheep. J Bone Joint Surg Am 82:80–88

    Article  CAS  Google Scholar 

  32. van Arkel ER, Goei R, de Ploeg I, de Boer HH (2000) Meniscal allografts: evaluation with magnetic resonance imaging and correlation with arthroscopy. Arthroscopy 16:517–521

    Article  Google Scholar 

  33. Verdonk P, Depaepe Y, Desmyter S et al (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419

    Article  Google Scholar 

  34. Verdonk PC, Verstraete KL, Almqvist KF et al (2006) Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc 14:694–706

    Article  Google Scholar 

  35. Vundelinckx B, Vanlauwe J, Bellemans J (2014) Long-term subjective, clinical, and radiographic outcome evaluation of meniscal allograft transplantation in the knee. Am J Sports Med 42:1592–1599

    Article  Google Scholar 

  36. Wang Y, Wluka AE, Pelletier JP et al (2010) Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology (Oxford) 49:997–1004

    Article  Google Scholar 

  37. Wilcox TR, Goble EM (1996) Indications for meniscal allograft reconstruction. Am J Knee Surg 9:35–36

    CAS  PubMed  Google Scholar 

  38. Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30:174–181

    Article  Google Scholar 

Download references

Acknowledgements

Editage (www.editage.co.kr) for English language editing

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Il Bin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in the authorship and publication of this contribution.

Ethical approval

Approved by Myongi hospital Institutional Review Board (IRB file No. 2018–06-008–002).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, DW., Bin, SI., Kim, JM. et al. Extrusions do not affect degenerative morphologic changes in lateral meniscus allografts during midterm follow-ups. Knee Surg Sports Traumatol Arthrosc 29, 1197–1205 (2021). https://doi.org/10.1007/s00167-020-06120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06120-3

Keywords

Navigation