Skip to main content
Log in

Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD).

Methods

Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task.

Results

The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001).

Conclusions

Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively.

Level of evidence

Level II, prospective cohort study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ageberg E, Forssblad M, Herbertsson P, Roos EM (2010) Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med 38:1334–1342

    Article  PubMed  Google Scholar 

  2. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252

    Article  PubMed  Google Scholar 

  3. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc Suppl 1:S2-12

    Google Scholar 

  4. Andriacchi TP, Andersson GBJ, Fermier RW, Stern D, Galante JO (1980) A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am 62:749–757

    Article  CAS  PubMed  Google Scholar 

  5. Chambers H, Sutherland D (2002) A practical guide to gait analysis. J Am Acad Orthop Surg 10:221–231

    Article  Google Scholar 

  6. Clancy WG (2015) Anatomic ACL reconstruction: the final answer? Knee Surg Sports Traumatol Arthrosc 23(3):636–639

    Article  PubMed  Google Scholar 

  7. Davis RB, Ounpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587

    Article  Google Scholar 

  8. Desai N, Alentorn-Geli E, van Eck CF, Musahl V, Fu FH, Karlsson J, Samuelsson K (2016) A systematic review of single- versus double-bundle ACL reconstruction using the anatomic anterior cruciate ligament reconstruction scoring checklist. Knee Surg Sports Traumatol Arthrosc 24(3):862–872

    Article  PubMed  Google Scholar 

  9. Geeslin AG, Civitarese D, Turnbull TL, Dornan GJ, Fuso FA, LaPrade RF (2016) Influence of lateral meniscal posterior root avulsions and the meniscofemoral ligaments on tibiofemoral contact mechanics. Knee Surg Sports Traumatol Arthrosc 24(5):1469–1477

    Article  PubMed  Google Scholar 

  10. Georgoulis AD, Papadonikolakis A, Papageorgiou CD et al (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79

    Article  PubMed  Google Scholar 

  11. Georgoulis AD, Papageorgiou CD, Makris CA, Moebius UG, Soucacos PN (1997) Anterior cruciate ligament reconstruction with the press-fit technique. 2–5 years followed-up of 42 patients. Acta Orthop Scand Suppl 275:42–45

    Article  CAS  PubMed  Google Scholar 

  12. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  CAS  PubMed  Google Scholar 

  13. Hantes ME, Zachos VC, Liantsis A, Venouziou A, Karantanas AH, Malizos KN (2009) Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 17:880–886

    Article  PubMed  Google Scholar 

  14. Herbort M, Domnick C, Raschke MJ, Lenschow S, Förster T, Petersen W, Zantop T (2016) Comparison of knee kinematics after single-bundle anterior cruciate ligament reconstruction via the medial portal technique with a central femoral tunnel and an eccentric femoral tunnel and after anatomic double-bundle reconstruction: a human cadaveric study. Am J Sports Med 44(1):126–132

    Article  PubMed  Google Scholar 

  15. Hertel P, Behrend H, Cierpinski T, Musahl V, Widjaja G (2005) ACL reconstruction using bone-patellar tendon-bone press-fit fixation: 10-year clinical results. Knee Surg Sports Traumatol Arthrosc 13:248–255

    Article  CAS  PubMed  Google Scholar 

  16. Hoher J, Kanamori A, Zeminski J, Fu FH, Woo SL (2001) The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction. Am J Sports Med 29:771–776

    Article  CAS  PubMed  Google Scholar 

  17. Irarrázaval S, Albers M, Chao T, Fu FH (2017) Gross, arthroscopic, and radiographic anatomies of the anterior cruciate ligament: foundations for anterior cruciate ligament surgery. Clin Sports Med 36(1):9–23

    Article  PubMed  Google Scholar 

  18. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Rihmond JC, Shelbourne KD (2001) Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med 29:600–613

    Article  CAS  PubMed  Google Scholar 

  19. Kondo E, Yasuda K, Onodera J, Kawaguchi Y, Kitamura N (2015) Effects of remnant tissue preservation on clinical and arthroscopic results after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 43(8):1882–1892

    Article  PubMed  Google Scholar 

  20. Kopf S, Musahl V, Bignozzi S, Irrgang JJ, Zaffagnini S, Fu FH (2014) In vivo kinematic evaluation of anatomic double bundle arterior cruciate ligament reconstruction. Am J Sports Med 42:2172–2177

    Article  PubMed  Google Scholar 

  21. LaPrade RF, Moulton SG, Nitri M, Mueller W, Engebretsen L (2015) Clinically relevant anatomy and what anatomic reconstruction means. Knee Surg Sports Traumatol Arthrosc 23(10):2950–2959

    Article  PubMed  Google Scholar 

  22. Lu W, Wang D, Zhu W, Li D, Ouyang K, Peng L, Feng W, Li H (2015) Placement of double tunnels in ACL reconstruction using bony landmarks versus existing footprint remnant: a prospective clinical study with 2-year follow-up. Am J Sports Med 43(5):1206–1214

    Article  PubMed  Google Scholar 

  23. Lucchetti L, Cappozzo A, Cappello A, Crose UD (1998) Skin movement artifact assessment and compensation in the estimation of knee-joint kinematics. J Biomech 31:977–984

    Article  CAS  PubMed  Google Scholar 

  24. Maak TG, Bedi A, Raphael BS et al (2011) Effect of femoral socket position on graft impingement after anterior cruciate ligament reconstruction. Am J Sports Med 39(5):1018–1023

    Article  PubMed  Google Scholar 

  25. Malempati CS, Metzler AV, Johnson DL (2017) Single-bundle anatomic anterior cruciate ligament reconstruction: surgical technique pearls and pitfalls. Clin Sports Med 36(1):53–70

    Article  PubMed  Google Scholar 

  26. Moebius U, Georgoulis A, Papageorgiou C, Papadonikolakis A, Rossis J, Soucacos P (2001) Alterations of the extensor apparatus after anterior cruciate ligament reconstruction using the medial third of the patellar tendon. Arthroscopy 17:953–959

    Article  CAS  PubMed  Google Scholar 

  27. Mohtadi N, Chan D, Barber R, Oddone Paolucci E (2015) A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med 25(4):321–331

    Article  PubMed  Google Scholar 

  28. Murawski CD, van Eck CF, Irrgang JJ, Tashman S, Fu FH (2014) Operative treatment of primary anterior cruciate ligament rupture in adults. J Bone Joint Surg Am 96(8):685–694

    Article  PubMed  Google Scholar 

  29. Nicholson JA, Sutherland AG, Smith FW (2011) Single bundle anterior cruciate reconstruction does not restore normal knee kinematics at six months: an upright MRI study. J Bone Joint Surg Br 93:1334–1340

    Article  CAS  PubMed  Google Scholar 

  30. Noehren B, Manal K, Davis I (2010) Improving between-day kinematic reliability using a marker placement device. J Orthop Res 28(11):1405–1410

    Article  PubMed  Google Scholar 

  31. Noyes FR, Jetter AW, Grood ES, Harms SP, Gardner EJ, Levy MS (2015) Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Am J Sports Med 43(3):683–692

    Article  PubMed  Google Scholar 

  32. Parkinson B, Robb C, Thomas M, Thompson P, Spalding T (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med. doi:10.1177/0363546517691961

    PubMed  Google Scholar 

  33. Porter MD, Schadbolt B (2014) “Anatomic” Single-bundle anterior cruciate ligament reconstruction reduces both anterior translation and internal rotation during pivot shift. Am J Sports Med 42(12):2948–2954

    Article  PubMed  Google Scholar 

  34. Prodromos CM, Brown C, Fu FH, Georgoulis AD, Gobbi A, Howell SM, Johnson D, Paulos LE, Shelbourne KD (2008) The anterior cruciate ligament: reconstruction and basic science. In: Bernard M, Ristanis S, Chouliaras V, Paessler H, Georgoulis A, The Anteromedial Portal for ACL Reconstruction, Chapter 19. Elsevier, Saunders, pp 129–133

    Google Scholar 

  35. Ristanis S, Stergiou N, Siarava E, Ntoulia A, Mitsionis G, Georgoulis A (2009) Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am 91(9):2151–2158

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saiegh YA, Suero EM, Guenther D, Hawi N, Decker S, Krettek C, Citak M, Omar M (2017) Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model. Knee Surg Sports Traumatol Arthrosc 25(4):1086–1092

    Article  PubMed  Google Scholar 

  37. Shultz SJ, Beynnon BD, Schmitz RJ (2009) Sex differences in coupled knee motions during the transition from non-weight bearing to weight bearing. J Orthop Res 27(6):717–723

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stergiou N, Bates BT, James SL (1999) Asynchrony between subtalar and knee joint function during running. Med Sci Sports Exerc 31:1645–1655

    Article  CAS  PubMed  Google Scholar 

  39. Stergiou N, Ristanis S, Moraiti C, Georgoulis A (2007) Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 37(7):601–613

    Article  PubMed  Google Scholar 

  40. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Realat Res 198:43–49

    Google Scholar 

  41. Triantafyllidi E, Paschos NK, Goussia A, Barkoula NM, Exarchos DA, Matikas TE, Malamou-Mitsi V, Georgoulis AD (2013) The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: a cadaveric study. Arthroscopy 29(12):1963–1973

    Article  PubMed  Google Scholar 

  42. Webster KE, McClelland JA, Wittwer JE, Tecklenburg K, Feller JA (2010) Three dimensional motion analysis of within and between day repeatability of tibial rotation during pivoting. Knee 17:329–333

    Article  PubMed  Google Scholar 

  43. Zampeli F, Ntoulia A, Giotis D et al (2012) Correlation between anterior cruciate ligament graft obliquity and tibial rotation during dynamic pivoting activities in patients with anatomic anterior cruciate ligament reconstruction: an in vivo examination. Arthroscopy 28:234–246

    Article  PubMed  Google Scholar 

  44. Zampeli F, Ntoulia A, Giotis D, Ristanis S, Mitsionis G, Pappas E, Georgoulis AD (2013) The PCL index correlates to the control of rotational kinematics that is achieved after anatomic ACL reconstruction. Am J Sports Med 42(3):665–674

    Article  PubMed  Google Scholar 

  45. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14(10):982–992

    Article  PubMed  Google Scholar 

Download references

Aknowledgements

The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and Traumatology (HAOST-EEXOT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantzeska Zampeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The authors received no financial support for the research, authorship, and/or publication for this article.

Ethical approval

The study was approved by the Ethical committee of the institution that the study was conducted.

Informed consent

Patients were informed, and they consented to conduct the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampeli, F., Terzidis, I., Espregueira-Mendes, J. et al. Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics. Knee Surg Sports Traumatol Arthrosc 26, 1367–1374 (2018). https://doi.org/10.1007/s00167-017-4742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4742-0

Keywords

Navigation