Skip to main content
Log in

Anterior cruciate ligament deficiency reduces walking economy in “copers” and “non-copers”

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Patients with ACL injury requiring surgical treatment (non-copers) demonstrate altered neuromuscular control and gait pattern compared with those returning to their pre-injury activities without surgery (copers). Pathological gait pattern may increase the energy cost of walking. We compared the energy cost of flat, uphill, and downhill walking between ACL-deficient and healthy individuals and between “copers” and “non-copers”.

Methods

Nineteen young males with unilateral ACL injury were allocated into “copers” and “non-copers” according to their ability to return to pre-injury activity without ACL reconstruction. Lysholm and IKDC scales were recorded, and a control group (n = 10) matched for physical characteristics and activity levels was included. All participants performed 8-min walking tasks at 0, +10, and −10 % gradients. Energy cost was assessed by measurement of oxygen consumption (VO2). HR and ventilation (VE), respiratory exchange ratio (RER), and VE/VO2 were also measured.

Results

VO2 and HR were higher in ACL-deficient patients than in controls during walking at 0, +10, and −10 % gradients (p < 0.01–0.05). There were no differences between “copers” and “non-copers” in VO2 and HR for any gradient. No differences were observed in VE, RER, and VE/VO2 among the three groups.

Conclusions

The walking economy of level, uphill, and downhill walking is reduced in ACL-deficient patients. Despite the improved functional and clinical outcome of “copers”, their walking economy appears similar to that of “non-copers” but impaired compared with healthy individuals. The higher energy demand and effort during locomotion in “copers” and “non-copers” has clinical implications for designing safer rehabilitation programmes. The increased energy cost in “copers” may be another parameter to consider when deciding on the most appropriate therapeutic intervention (operative and non-operative), particularly for athletes.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albracht K, Arampatzis A (2013) Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur J Appl Physiol 113:1605–1615

    Article  PubMed  Google Scholar 

  2. Alkjær T, Henriksen M, Simonsen EB (2011) Different knee joint loading patterns in ACL deficient copers and non-copers during walking. Knee Surg Sport Traumatol Arthrosc 19:615–621

    Article  Google Scholar 

  3. Alkjaer T, Simonsen E, Jørgensen U, Dyhre-Poulsen P (2003) Evaluation of the walking pattern in two types of patients with anterior cruciate ligament deficiency: copers and non-copers. Eur J Appl Physiol 89:301–308

    Article  PubMed  Google Scholar 

  4. Andrade MDS, Lira CB, Vancini RL, Nakamoto FP, Cohen M, Silva AC (2014) Differences in muscle strength after ACL reconstruction do not influence cardiorespiratory responses to isometabolic exercise. Brazilian J Phys Ther 18:144–151

    Article  Google Scholar 

  5. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    Article  CAS  PubMed  Google Scholar 

  6. Binder-Macleod BI, Buchanan TS (2006) Tibialis anterior volumes and areas in ACL-injured limbs compared with unimpaired. Med Sci Sports Exerc 38:1553–1557

    Article  PubMed  Google Scholar 

  7. Boerboom AL, Hof AL, Halbertsma JPK, Van Raaij JJAM, Schenk W, Diercks RL, Van Horn JR (2001) Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sport Traumatol Arthrosc 9:211–216

    Article  CAS  Google Scholar 

  8. Colak M, Ayan I, Dal U, Yaroglu T, Dag F, Yilmaz C, Beydagi H (2011) Anterior cruciate ligament reconstruction improves the metabolic energy cost of level walking at customary speeds. Knee Surg Sport Traumatol Arthrosc 19:1271–1276

    Article  Google Scholar 

  9. Corcoran PJ, Brengelmann GL (1970) Oxygen uptake in normal and handicapped subjects, in relation to speed of waing beside velocity-controlled cart. Arch Phys Med Rehabil 51:78–87

    CAS  PubMed  Google Scholar 

  10. Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74

    Article  PubMed  Google Scholar 

  11. Darter BJ, Rodriguez KM, Wilken JM (2013) Test–retest reliability and minimum detectable change using the K4b 2: oxygen consumption, gait efficiency, and heart rate for healthy adults during submaximal walking. Res Q Exerc Sport 84:223–231

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duffield R, Dawson B, Pinnington HC, Wong P (2004) Accuracy and reliability of a Cosmed K4b2 portable gas analysis system. J Sci Med Sport 7:11–22

    Article  CAS  PubMed  Google Scholar 

  13. Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31:210–215

    Article  CAS  PubMed  Google Scholar 

  14. Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA (2010) Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med 38:586–593

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech 17:274–285

    Article  Google Scholar 

  16. Fitzgerald GK, Axe M, Snyder-mackler L (2000) Proposed practice guidelines for non operative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sport Phys Ther 30:194–203

    Article  CAS  Google Scholar 

  17. Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 8:76–82

    Article  CAS  PubMed  Google Scholar 

  18. Fuentes A, Hagemeister N, Ranger P, Heron T, De Guise JA (2011) Gait adaptation in chronic anterior cruciate ligament-deficient patients: pivot-shift avoidance gait. Clin Biomech 26:181–187

    Article  Google Scholar 

  19. Gao B, Zheng N (2015) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech 25:222–229

    Article  Google Scholar 

  20. Guglielmo LGA, Greco CC, Denadai BS (2009) Effects of strength training on running economy. Int J Sports Med 30:27–32

    Article  CAS  PubMed  Google Scholar 

  21. Hefti F, Müller W (1993) Current state of evaluation of knee ligament lesions. The new IKDC knee evaluation form. Orthopade 22:351–362

    CAS  PubMed  Google Scholar 

  22. Herrington L, Fowler E (2006) A systematic literature review to investigate if we identify those patients who can cope with anterior cruciate ligament deficiency. Knee 13:260–265

    Article  PubMed  Google Scholar 

  23. Hopkins WG (2002) A scale of magnitudes for effect statistics. In: A new view statistics. http://sportsci.org/resource/stats/effectmag.html. Accessed 20 July 2015

  24. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12

    Article  PubMed  Google Scholar 

  25. Hurd WJ, Snyder-Mackler L (2007) Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res 25:1369–1377

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kang J, Chaloupka EC, Mastrangelo MA, Hoffman JR (2002) Physiological and biomechanical analysis of treadmill walking up various gradients in men and women. Eur J Appl Physiol 86:503–508

    Article  PubMed  Google Scholar 

  27. Kaplan Y (2011) Identifying individuals with an anterior cruciate ligament-deficient knee as copers and noncopers: a narrative literature review. J Orthop Sports Phys Ther 41:758–766

    Article  PubMed  Google Scholar 

  28. Kim S, Bosque J, Meehan JP, Jamali A, Marder R (2011) Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am 93:994–1000

    Article  PubMed  Google Scholar 

  29. Kirk RE (1996) Practical significance: a concept whose time has come. Educ Psychol Meas 56:746–759

    Article  Google Scholar 

  30. Knoll Z, Kiss RM, Kocsis L (2004) Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol 14:287–294

    Article  PubMed  Google Scholar 

  31. Kotrlik J, Williams H, Jabor K (2011) reporting and interpreting effect size in quantitative agricultural education research. J Agric Educ 52:132–142

    Article  Google Scholar 

  32. Macleod TD, Snyder-Mackler L, Buchanan TS (2014) Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury. J Orthop Sports Phys Ther 44:76–84

    Article  PubMed  Google Scholar 

  33. Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C (2003) Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. J Appl Physiol 95:2248–2256

    Article  PubMed  Google Scholar 

  34. Mattsson E, Broström LA, Linnarsson D (1990) Changes in walking ability after knee replacement. Int Orthop 14:277–280

    Article  CAS  PubMed  Google Scholar 

  35. McHugh MP, Spitz AL, Lorei MP, Nicholas SJ, Hershman EB, Gleim GW (1994) Effect of anterior cruciate ligament deficiency on economy of walking and jogging. J Orthop Res 12:592–597

    Article  CAS  PubMed  Google Scholar 

  36. McLaughlin JE, King GA, Howley ET, Bassett DR, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284

    Article  CAS  PubMed  Google Scholar 

  37. Murphy MT, Skinner TL, Cresswell AG, Crawford RW, Journeaux SF, Russell TG (2014) The effect of knee flexion contracture following total knee arthroplasty on the energy cost of walking. J Arthroplasty 29:85–89

    Article  PubMed  Google Scholar 

  38. Roberts CS, Rash GS, Honaker JT, Wachowiak MP, Shaw JC (1999) A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait Posture 10:189–199

    Article  CAS  PubMed  Google Scholar 

  39. Santos-Concejero J, Tam N, Granados C, Irazusta J, Bidaurrazaga-Letona I, Zabala-Lili J, Gil SM (2014) Interaction effects of stride angle and strike pattern on running economy. Int J Sports Med 35:1118–1123

    Article  CAS  PubMed  Google Scholar 

  40. Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sport Med 34:465–485

    Article  Google Scholar 

  41. Schrack JA, Simonsick EM, Ferrucci L (2010) Comparison of the cosmed K4b2 portable metabolic system in measuring steady-state walking energy expenditure. PLoS One 5:e9292

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Google Scholar 

  43. Thomas SS, Buckon CE, Schwartz MH, Russman BS, Sussman MD, Aiona MD (2009) Variability and minimum detectable change for walking energy efficiency variables in children with cerebral palsy. Dev Med Child Neurol 51:615–621

    Article  PubMed  Google Scholar 

  44. Waters RL, Lunsford BR, Perry J, Byrd R (1988) Energy-speed relationship of walking: standard tables. J Orthop Res 6:215–222

    Article  CAS  PubMed  Google Scholar 

  45. Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231

    Article  CAS  PubMed  Google Scholar 

  46. Wexler G, Hurwitz DE, Bush-Joseph CA, Andriacchi TP, Bach BR (1998) Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop Relat Res 348:166–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikiforos Galanis MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliopoulos, E., Galanis, N., Iosifidis, M. et al. Anterior cruciate ligament deficiency reduces walking economy in “copers” and “non-copers”. Knee Surg Sports Traumatol Arthrosc 25, 1403–1411 (2017). https://doi.org/10.1007/s00167-015-3709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3709-2

Keywords

Navigation