Skip to main content
Log in

Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The objective of this study was to evaluate the dimensions of the femoral intercondylar notch intraoperatively and to determine whether a small intercondylar notch increases the risk of graft failure after individualized anatomic single- or double-bundle anterior cruciate ligament (ACL) reconstruction.

Methods

A retrospective review of prospectively collected data was performed. One hundred and thirty-seven primary single- or double-bundle ACL reconstructions with at least 2-year follow-up were included in this study. Of these, 116 subjects had intraoperative notch measurements recorded. All operations were performed anatomically using a three-portal technique by the senior author. Intraoperative notch measurements (width at the base, middle, and top and height) were taken using a standard, commercially available arthroscopic ruler. Graft failure was defined as patient report of instability, pathologic laxity on clinical exam, or an MRI or arthroscopic diagnosis of rupture or absence of the ACL graft.

Results

Graft failure at 2-year follow-up in the overall population was 13.9 % (19/137). Graft failure was reported to occur from contact or non-contact trauma, failure of the graft to incorporate, or hardware failure. The dimensions of the intercondylar notch and the graft type used did not influence the risk of graft failure.

Conclusions

Smaller intercondylar notch dimensions do not appear to be a risk factor for higher rates of graft failure after anatomic and individualized ACL reconstruction. Based on these data, the use of notchplasty is not supported in conjunction with individualized anatomic single- or double-bundle ACL reconstruction.

Level of evidence

Case series, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Saeed O, Brown M, Athyal R, Sheikh M (2013) Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 21(3):678–682

    Article  PubMed  Google Scholar 

  2. Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB (1987) Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15(6):547–552

    Article  CAS  PubMed  Google Scholar 

  3. Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M (2002) Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30(3):329–333

    PubMed  Google Scholar 

  4. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34(5):703–707

    Article  PubMed Central  PubMed  Google Scholar 

  5. Everhart JS, Flanigan DC, Chaudhari AM (2014) Anteromedial ridging of the femoral intercondylar notch: an anatomic study of 170 archival skeletal specimens. Knee Surg Sports Traumatol Arthrosc 22(1):80–87

    Article  PubMed  Google Scholar 

  6. Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38(8):1667–1673

    Article  PubMed  Google Scholar 

  7. Goss BC, Howell SM, Hull ML (1998) Quadriceps load aggravates and roofplasty mitigates active impingement of anterior cruciate ligament grafts against the intercondylar roof. J Orthop Res 16(5):611–617

    Article  CAS  PubMed  Google Scholar 

  8. Goss BC, Hull ML, Howell SM (1997) Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthop Res 15(2):263–268

    Article  CAS  PubMed  Google Scholar 

  9. Hefzy MS, Grood ES (1986) Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers. J Biomech Eng 108(1):73–82

    Article  CAS  PubMed  Google Scholar 

  10. Hernigou P, Garabedian JM (2002) Intercondylar notch width and the risk for anterior cruciate ligament rupture in the osteoarthritic knee: evaluation by plain radiography and CT scan. Knee 9(4):313–316

    Article  PubMed  Google Scholar 

  11. Hoteya K, Kato Y, Motojima S, Ingham SJ, Horaguchi T, Saito A, Tokuhashi Y (2011) Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 131(3):371–376

    Article  PubMed  Google Scholar 

  12. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH (2012) Individualized anterior cruciate ligament surgery: a prospective study comparing anatomic single- and double-bundle reconstruction. Am J Sports Med 40(8):1781–1788

    Article  PubMed  Google Scholar 

  13. Ireland M, Ballantyne B, Little K, McClay I (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9(4):200–205

    Article  CAS  PubMed  Google Scholar 

  14. Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH (2011) Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 19(4):674–679

    Article  PubMed  Google Scholar 

  15. Iriuchishima T, Shirakura K, Horaguchi T, Morimoto Y, Fu FH (2011) Full knee extension magnetic resonance imaging for the evaluation of intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S22–S28

    Article  PubMed  Google Scholar 

  16. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38(8):1611–1617

    Article  PubMed  Google Scholar 

  17. Jarvela T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15(5):500–507

    Article  PubMed  Google Scholar 

  18. Kropf EJ, Shen W, van Eck CF, Musahl V, Irrgang JJ, Fu FH (2013) ACL–PCL and intercondylar notch impingement: magnetic resonance imaging of native and double-bundle ACL-reconstructed knees. Knee Surg Sports Traumatol Arthrosc 21(3):720–725

    Article  PubMed  Google Scholar 

  19. LaPrade RF, Burnett QM 2nd (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22(2):198–202 discussion 203

    Article  CAS  PubMed  Google Scholar 

  20. Lombardo S (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 33(1):29–34

    Article  PubMed  Google Scholar 

  21. Lund-Hanssen H, Gannon J, Engebretsen L, Holen KJ, Anda S, Vatten L (1994) Intercondylar notch width and the risk for anterior cruciate ligament rupture. A case-control study in 46 female handball players. Acta Orthop Scand 65(5):529–532

    Article  CAS  PubMed  Google Scholar 

  22. Motohashi M (2004) Profile of bilateral anterior cruciate ligament injuries: a retrospective follow-up study. J Orthop Surg (Hong Kong) 12(2):210–215

    CAS  Google Scholar 

  23. Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T (2005) Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat 27(2):108–112

    Article  PubMed  Google Scholar 

  24. Palmer I (1938) On the injuries to the ligaments of the knee joint. A clinical study. Acta Chir Scand Suppl 53:1–28

  25. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957

    Article  PubMed  Google Scholar 

  26. Shah AA, McCulloch PC, Lowe WR (2010) Failure rate of Achilles tendon allograft in primary anterior cruciate ligament reconstruction. Arthroscopy 26(5):667–674

    Article  PubMed  Google Scholar 

  27. Shelbourne KD, Davis TJ, Klootwyk TE (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26(3):402–408

    CAS  PubMed  Google Scholar 

  28. Shelbourne KD, Facibene WA, Hunt JJ (1997) Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 5(4):229–233

    Article  CAS  PubMed  Google Scholar 

  29. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Snow M, Campbell G, Adlington J, Stanish WD (2010) Two to five year results of primary ACL reconstruction using doubled tibialis anterior allograft. Knee Surg Sports Traumatol Arthrosc 18(10):1374–1378

    Article  PubMed  Google Scholar 

  31. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93(11):1475–1478

    Article  CAS  PubMed  Google Scholar 

  32. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21(4):535–539

    Article  CAS  PubMed  Google Scholar 

  33. Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16(5):449–454

    Article  CAS  PubMed  Google Scholar 

  34. Stein V, Li L, Guermazi A, Zhang Y, Kent Kwoh C, Eaton CB, Hunter DJ, Investigators OAI (2010) The relation of femoral notch stenosis to ACL tears in persons with knee osteoarthritis. Osteoarthr Cartil 18(2):192–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Teitz CC, Lind BK, Sacks BM (1997) Symmetry of the femoral notch width index. Am J Sports Med 25(5):687–690

    Article  CAS  PubMed  Google Scholar 

  36. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, Pierre PS, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 west point cadets. Am J Sports Med 31(6):831–842

    PubMed  Google Scholar 

  37. van Diek FM, Wolf MR, Murawski CD, van Eck CF, Fu FH (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22(5):987–994

    PubMed  Google Scholar 

  38. van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268

    Article  PubMed  Google Scholar 

  39. van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH (2012) Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 40(4):800–807

    Article  PubMed  Google Scholar 

  40. van Eck CF, Schreiber VM, Liu TT, Fu FH (2010) The anatomic approach to primary, revision and augmentation anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1154–1163

    Article  PubMed  Google Scholar 

  41. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19(3):372–377

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wang JH, Kim JG, Ahn JH, Lim HC, Hoshino Y, Fu FH (2012) Is femoral tunnel length correlated with the intercondylar notch and femoral condyle geometry after double-bundle anterior cruciate ligament reconstruction using the transportal technique? An in vivo computed tomography analysis. Arthroscopy 28(8):1094–1103

    Article  PubMed  Google Scholar 

  43. Wolters F, Vrooijink SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S17–S21

    Article  PubMed  Google Scholar 

  44. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(4):804–815

    Article  PubMed  Google Scholar 

  45. Fujii M, Furumatsu T, Miyazawa S, Okada Y, Tanaka T, Ozaki T, Abe N (2014) Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-2891-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M.R., Murawski, C.D., van Diek, F.M. et al. Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23, 680–686 (2015). https://doi.org/10.1007/s00167-014-3414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3414-6

Keywords

Navigation