Skip to main content
Log in

Effects of anterior cruciate ligament injury on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players

  • Sports Medicine
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate the effects of anterior cruciate ligament injury on mechanical and contractile characteristics of the skeletal muscles of the lower extremity in competitive soccer players through tensiomyography (TMG).

Methods

All competitive male soccer players with confirmed acute anterior cruciate ligament tear included underwent resting TMG assessment of muscles of both lower extremities before anterior cruciate ligament reconstruction. The same values were obtained from a sex- and sports level-matched control group. The maximal displacement, delay time, contraction time, sustained time, and half-relaxation time were obtained for the following muscles in all subjects: vastus medialis, vastus laterals, rectus femoris, semitendinosus, biceps femoris, gastrocnemius medialis, and gastrocnemius lateralis.

Results

The majority of TMG parameters were higher in the injured compared to the control group. The contraction time of the vastus medialis, vastus lateralis, and rectus femoris was significantly higher in the injured compared to the control group (p = 0.003, p = 0.001, and p < 0.001, respectively). The biceps femoris was the only hamstring muscle with significant differences between groups, with increased contraction time and maximal displacement in the injured compared to the control group (p = 0.002 and p < 0.001, respectively). The gastrocnemius medialis was clearly more affected than the gastrocnemius lateralis, with contraction time, half-relaxation time, and maximal displacement significantly higher (p = 0.01, p = 0.03, and p < 0.001, respectively), and the sustained time significantly lower (p = 0.01), in the injured compared to the control group. The contraction time of the vastus medialis, vastus lateralis, rectus femoris, semitendinosus, and biceps femoris was significantly higher in the injured compared to non-injured side in the anterior cruciate ligament-injured group (p = 0.007, p = 0.04, p = 0.004, p = 0.02, and p = 0.02, respectively).

Conclusions

Anterior cruciate ligament injury caused a decrease in contraction velocity (in quadriceps, hamstrings and gastrocnemius medialis), resistance to fatigue (in quadriceps and gastrocnemius medialis), and muscle tone/stiffness (in hamstrings and gastrocnemius medialis). Overall, it was demonstrated that these effects were worst in the quadriceps and gastrocnemius medialis compared to the hamstring and gastrocnemius lateralis. These findings may contribute to a better design of rehabilitation programs in order to optimize the recovery and potentially increase sport performance at return to sport.

Level of evidence

Prognostic study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33:524–530

    Article  PubMed  Google Scholar 

  2. Agel J, Evans TA, Dick R, Putukian M, Marshall SW (2007) Descriptive epidemiology of collegiate men’s soccer injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2002–2003. J Athl Train 42:270–277

    PubMed  PubMed Central  Google Scholar 

  3. Alentorn-Geli E, Alvarez-Diaz P, Ramon S, Marin M, Steinbacher G, Boffa JJ, Cusco X, Ballester J, Cugat R (2014) Assessment of neuromuscular risk factors for anterior cruciate ligament injury through tensiomyography in male soccer players. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3018-1

    Google Scholar 

  4. Alentorn-Geli E, Alvarez-Diaz P, Ramon S, Marin M, Steinbacher G, Rius M, Seijas R, Ares O, Cugat R (2014) Assessment of gastrocnemius tensiomyographic neuromuscular characteristics as risk factors for anterior cruciate ligament injury in male soccer players. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3007-4

    Google Scholar 

  5. Alvarez-Diaz P, Alentorn-Geli E, Ramon S, Marin M, Steinbacher G, Rius M, Seijas R, Ballester J, Cugat R (2014a) Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3165-4

    Google Scholar 

  6. Alvarez-Diaz P, Alentorn-Geli E, Ramon S, Marin M, Steinbacher G, Rius M, Seijas R, Ballester J, Cugat R (2014b) Comparison of tensiomyographic neuromuscular characteristics between muscles of the dominant and non-dominant lower extremity in male soccer players. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3298-5

    Google Scholar 

  7. Boerboom AL, Hof AL, Halbertsma JP, van Raaij JJ, Schenk W, Diercks RL, van Horn JR (2001) Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 9:211–216

    Article  CAS  PubMed  Google Scholar 

  8. Carrasco L, Sañudo B, de Hoyo M, Pradas F, Da Silva ME (2011) Effectiveness of low-frequency vibration recovery method on blood lactate removal, muscle contractile properties and on time to exhaustion during cycling at VO2max power output. Eur J Appl Physiol 111:2271–2279

    Article  PubMed  Google Scholar 

  9. Chmielewski TL, Stackhouse S, Axe MJ, Snyder-Mackler L (2004) A prospective analysis of incidence and severity of quadriceps inhibition in a consecutive sample of 100 patients with complete acute anterior cruciate ligament rupture. J Orthop Res 22:925–930

    Article  PubMed  Google Scholar 

  10. Dahmane R, Valencic V, Knez N, Erzen I (2001) Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med Biol Eng Comput 39:51–55

    Article  CAS  PubMed  Google Scholar 

  11. Delagi EF, Perotto A, Iazetti J, Morrison D (1975) Anatomic guide for the electromyographer: the limbs. Charles C. Thomas, Springfield, pp 45–55

    Google Scholar 

  12. DeMont RG, Lephart SM, Giraldo JL, Swanik CB, Fu FH (1999) Muscle preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train 34:115–120

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Friemert B, Faist M, Spengler C, Gemgross H, Claes L, Melnyk M (2005) Intraoperative direct mechanical stimulation of the anterior cruciate ligament elicits short- and medium-latency hamstring reflexes. J Neurophysiol 94:3996–4001

    Article  CAS  PubMed  Google Scholar 

  14. García-Manso JM, Rodriguez-Matoso D, Rodriguez-Ruiz D, Sarmiento S, de Saa Y, Calderon J (2011) Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am J Phys Med Rehabil 90:356–363

    Article  PubMed  Google Scholar 

  15. Gottlob CA, Baker CL (2000) Anterior cruciate ligament reconstruction: socioeconomic issues and cost effectiveness. Am J Orthop (BelleMead NJ) 29:472–476

    CAS  Google Scholar 

  16. Houck JR, Wilding GE, Gupta R, De Haven KE, Maloney M (2007) Analysis of EMG patterns of control subjects and subjects with ACL deficiency during an unanticipated walking cut task. Gait Posture 25:628–638

    Article  PubMed  Google Scholar 

  17. Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM (2008) Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med 27:383–404

    Article  PubMed  Google Scholar 

  18. Isaac DL, Beard DJ, Price AJ, Rees J, Murray DW, Dodd CA (2005) In-vivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. Knee 12:25–31

    Article  CAS  PubMed  Google Scholar 

  19. Kalund S, Sinkjaer T, Arendt-Nielsen L, Simonsen O (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18:245–248

    Article  CAS  PubMed  Google Scholar 

  20. Kokkonen J, Nelson A, Cornwell A (1998) Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport 69:411–415

    Article  CAS  PubMed  Google Scholar 

  21. Krizaj D, Simunic B, Zagar T (2008) Short-term repeatability of parameters extracted from radial displacement of muscle belly. J Electromyogr Kinesiol 18:645–651

    Article  PubMed  Google Scholar 

  22. Kvist J (2005) Sagittal tibial translation during exercises in the anterior cruciate ligament-deficient knee. Scand J Med Sci Sports 15:148–158

    Article  PubMed  Google Scholar 

  23. Kvist J, Gillquist J (2001) Sagittal plane knee translation and electromyographic activity during closed and open kinetic chain exercises in anterior cruciate ligament-deficient patients and control subjects. Am J Sports Med 29:72–82

    CAS  PubMed  Google Scholar 

  24. Kvist J, Karlberg C, Gerdle B, Gillquist J (2001) Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals. J Orthop Sports Phys Ther 31:4–15

    Article  CAS  PubMed  Google Scholar 

  25. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769

    Article  PubMed  Google Scholar 

  26. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players 12 years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152

    Article  CAS  PubMed  Google Scholar 

  27. Mather RC, Koenig L, Kocher L, Dall TM, Gallo P, Scott DJ, Bach BR, Spindler KP, group Mk (2013) Societal and economic impact of anterior cruciate ligament tears. J Bone Jt Surg Am 95:1751–1759

    Article  Google Scholar 

  28. McNair PJ, Wood GA (1993) Frequency analysis of the EMG from the quadriceps of anterior cruciate ligament deficient individuals. Electromyogr Clin Neurophysiol 33:43–48

    CAS  PubMed  Google Scholar 

  29. Osternig LR, Caster BL, James CR (1995) Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction. Med Sci Sports Exerc 27:805–808

    Article  CAS  PubMed  Google Scholar 

  30. Rey E, Lago-Peñas C, Lago-Ballesteros J (2012) Tensiomyography of selected lower-limb muscles in professional soccer players. J Electromyogr Kinesiol 22:866–872

    Article  PubMed  Google Scholar 

  31. Rey E, Lago-Peñas C, Lago-Ballesteros J, Casáis L (2012) The effect of recovery strategies on contractile properties using tensiomyography and perceived muscle soreness in professional soccer players. J Strength Cond Res 26:3081–3088

    Article  PubMed  Google Scholar 

  32. Rusu LD, Cosma GG, Cernaianu SM, Marin MN, Rusu PF, Cioc-Nescu DP, Neferu FN (2013) Tensiomyography method used for neuromuscular assessment of muscle training. J Neuroeng Rehabil 10:67

    Article  PubMed  PubMed Central  Google Scholar 

  33. Simunic B (2012) Between-day reliability of a method for non-invasive estimation of muscle composition. J Electromyogr Kinesiol 22:527–530

    Article  PubMed  Google Scholar 

  34. Swanik CB, Lephart SM, Giraldo JL, DeMont RG, Fu FH (1999) Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train 34:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Moreno D, Maffiuletti NA (2010) Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J Electromyogr Kinesiol 20:761–766

    Article  PubMed  Google Scholar 

  36. Urbach D, Nebelung W, Weiler HT, Awiszus F (1999) Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc 31:1691–1696

    Article  CAS  PubMed  Google Scholar 

  37. Valencic V, Knez N (1997) Measuring of skeletal muscle’s dynamic properties. Artif Organs 21:240–242

    Article  CAS  PubMed  Google Scholar 

  38. Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L (2005) Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med 33:402–407

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Department of Surgery at Universitat Autonoma de Barcelona. This manuscript was developed as part of a Doctorate Degree performed in this Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Alvarez-Diaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Diaz, P., Alentorn-Geli, E., Ramon, S. et al. Effects of anterior cruciate ligament injury on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg Sports Traumatol Arthrosc 24, 2264–2270 (2016). https://doi.org/10.1007/s00167-014-3319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3319-4

Keywords

Navigation